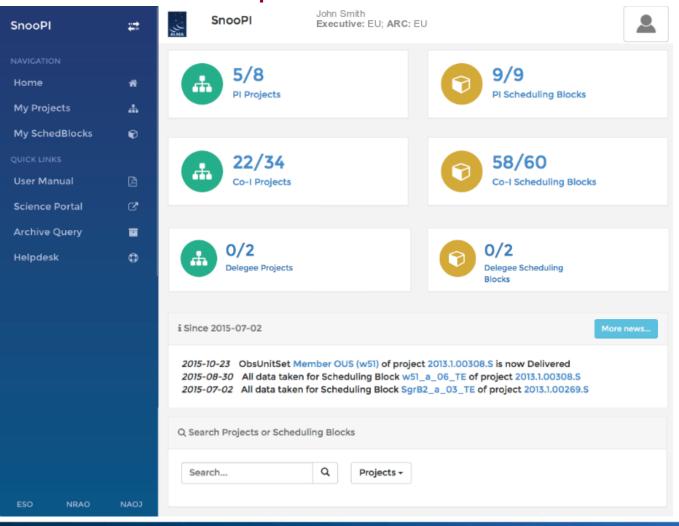
ALMA Data Productswhat to expect after your observations are made

Erica Keller

Authors: Sarah Wood, Devaky Kunneriath, Erica Keller, Catarina Ubach

Associated Universities. Inc. Atacama Large Millimeter/submillimeter Array Expanded Very Large Array

The Condensed Version


- Project tracking SnooPI
- Data delivered after passing Quality Assurance (QA)
- The Pipeline Weblog–Calibration and Imaging Information
- Download data from *Archive Query* and *Request Handler* tools on the ALMA Science Portal
- Delivered data include:
 - Calibration tables and diagnostics
 - Preliminary images (better products may be possible with more careful continuum & non-default cleaning parameters)

This talk will be available online for reference after this workshop.

Monitor Project Status: SnooPALMA

https://asa.alma.cl/snoopi

Monitor Project Status: SnooPI

QA Report:

A 2013.1.06789. 🖌 Observing the centre of the galaxy with, ALMA & ObsUnitSet & SG OUS (CH3CN 5-4 & isotopolog... & Group OUS & Member OUS (SgrB2) SgrB2_a_03_TP & Member OUS (SgrB2) SgrB2_a_03_TC & Member OUS (SgrB2) SgrB2_a_03_7M & Member OUS (query) 3c454.3_Sgr82_a_03_TP & Member OUS (SgrB2) SgrB2_a_03_TE

				History		
cheduling Block Na	me		_a_03_7M 🛷			
ientific Goal Name		7m ob Univer	servations o rse	t my mos	t favourite o	bjects
ember ObsUnitSet		uid://A	001/X121/X4b	Histor	y Archive	query
ray		7m Ar	rav			
nd		3	,			
		17 ^h 47 ^r	ⁿ 19.438 ^s			
:		-28° 23	5° 29.780°			
presentative Freq z	uency,	91.28				
ccessful Execution	15	4/4				
d time	Duration	[min]	Execution B	lock UID	QA0	
-07-03 05:59:44	64.07		uid://A002/X8	5dcf7/Xefe	🕜 Report	
4-07-03 04:39:10	64.49		uid://A002/X8	5dcf7/Xc7c	🖌 Report	
4-07-02 06:49:28	70.38		uid://A002/X8	5c183/X1434	🖋 Report	
14-07-01 07:02:06	70.18		uid://A002/X8	5b7b2/Xb3	🛹 Report	

J.

Execution block uid://A002/X85dcf7/Xefe

Temperatu	res [°K]	Array	
Average T _{sv}	41.79	Number of antennas	8
σ	21.35	Shortest baseline	8.903 m
T _{sys} ,min	N/A	Longest baseline	47.986 m
T _{sys.max}	64.55	Angular resolution	13.65 arcsec
		Maximum Recoverable Scale	73.291 arcsec

Sources

Intent	Object	RA	Dec	Time [min]
Science Target	SgrB2	17 ^h 47 ^m 19.4 ^s	-28° 23' 29.8*	26.21
Amplitude Calibrator	31733-130	17 ^h 33 ^m 2.7 ^s	-13° 4' 49.5"	5.04
Atmospheric Calibrator	J1733-13O	17 ^h 33 ^m 2.7 ^s	-13° 4' 49.5"	0.29
Atmospheric Calibrator	J1700-2610	17 ^h 0 ^m 53.2 ^s	-26° 10' 51.7*	0.29
Atmospheric Calibrator	SgrB2	17 ^h 47 ^m 19.4 ^s	-28° 23' 29.8"	0.58
Bandpass Calibrator	J1700-2610	17 ^h 0 ^m 53.2 ^s	-26° 10' 51.7"	10.08
Flux Calibrator	31733-130	17 ^h 33 ^m 2.7 ^s	-13° 4' 49.5"	5.04
Phase Calibrator	31744-3116	17 ^h 44 ^m 23.6 ^s	-31° 16' 36.3"	5.04
Pointing Calibrator	J1700-2610	17 ^h 0 ^m 53.2 ^s	-26° 10' 51.7"	2.02

Data Delivery Email

- Sent when an individual MOUS passes QA2
- Data are ingested into the archive and made available at all Regional Centers
- Triggers Start of Proprietary Period
 - Usually 12 months
- Only Sent to Pl
- Included Metadata:
 - MOUS ID, Scheduling Block (SB) name, project title
- Included Instructions:
 - Downloading data
 - Delegating access for registered ALMA users
- Included Descriptions:

Proprietary period

Data Delivery Email

- NA PIs get two delivery emails
 - 1. From JAO with links:
 - Archive query for MOUS package
 - 2. From NAASC:
 - Fully-calibrated MS (North America Only)
 - Calibration and Imaging Report (weblog)
 - ADMIT products
 - Knowledgebase Article: "Where can I get additional information for my NA added value data products?"
 - https://help.almascience.org/index.php?/ Knowledgebase/Article/View/412

Data Delivery Email

- Publication Requirements:
 - ALMA acknowledgement
 - ARC specific acknowledgement
- Additional Support:
 - Funded face-to-face reduction visits to your home ARC
 - Contact info for ARC Helpdesk

Goals of Quality Assurance (QA) Process

- Ensure reliable final data product
 - Desired sensitivity (as specified by PI)
 - Desired resolution (as specified by PI)
- Ensure calibration and QA imaging free from major artifacts
- Warning: Errors in PI-supplied parameters are outside scope of QA process, including:
 - Incorrect source coordinates
 - Inadequate frequency specification
 - Inadequate sensitivity limits

See <u>ALMA Technical Handbook</u> for details.

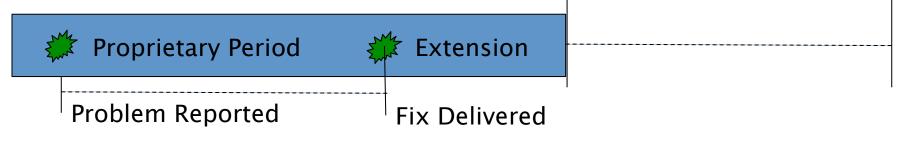
During Observations – QA0

- Monitoring of on-the-fly calibration and system performance
- Rapidly-varying parameters (~SB/EB timescales)
 - Atmospheric effects
 - Antenna issues
 - Front-end issues
 - Connectivity issues
 - Back-end issues
- Tolerances for each are explicitly laid out
 - No fewer than 34 antennas in 12m array
 - Bandpass calibrator is strong enough
- Quick reduction may be run to check flux measurements and phase stability

Between Observations – QAI

- "Regular array maintenance" timescales
- Slowly Varying Parameters (~MOUS timescales)
- General array calibration
 - Baseline measurements
 - Delays
- Antenna Calibrations
 - All-sky pointing
 - Focus curves
 - Beam patterns, etc.
- Observatory Calibrator Surveys
 - Solar-system and quasar flux monitoring

After Observations – QA2


- Calibration by pipeline (~70%) or DA/staff.
- Final QA checks include
 - RMS of complex antenna-based gains
 - Absolute flux calibration scale
 - T_{sys} within acceptable range
 - Proper phase transfer cadence
 - Proper bandpass corrections
- Assessment of Imaging Products
 - Signal-to-noise and angular resolution
 - No strong artifacts
 - Performed on the reference source/spectra
- Information about QA review is aggregated for delivery in the QA2 Report

After Delivery – QA3

- Additional QA stage possibly triggered by PI reporting any issues underlying:
 - Data, observing procedure, calibration
- Re-evaluation of calibrated data products
 - Only occurs if QA0 -> QA2 miss something
- Likely results in fix being implemented and products reingested into ALMA archive
- Proprietary period extension (within two months of delivery)

The Wonderous Weblog! Your guide to QA2

Pipeline Users Guide, Chapter 8 for more information.

Home By Topic By Task Click EB for information on the observation

Observation Overview		Pipeline Summa	iry	
Project	Project UID	Pipeline Version	40896 (Pipeline-CASA51-P2-B) (documentation)	
Principal Investigator	PI Name	CASA Version	5.1.1-5 r40000	
OUS Status Entity id	Project UID	Pipeline Start	2017-11-10 13:12:52 UTC	
Observation Start	2017-11-03 01:26:43 UTC	Execution Duration	6:13:27	
Observation End	2017-11-08 02:21:19 UTC			

Observation Summary

			Time (UTC)			Baseline Leng	ıth		
Measurement Set	Receivers	Num Antennas	Start	End	On Source	Min	Мах	RMS	Size
Observing Unit Set Status: uid://A001/X1/96/X499 Scheduling Block ID: uid://A00	01/X1296/X47f								
Session: session_1									
Execution_UID.ms	ALMA Band 6	11	2017-11-03 01:26:42	2017-11-03 02:46:58	0:49:57	8.9 m	48.9 m	27.3 m	2.1 GB
	ALMA Band 6	11	2017-11-03 01:44:53	2017-11-03 02:44:12	0:49:57	8.9 m	48.9 m	27.3 m	836.9 MB
Session: session_2									
Execution_UID.ms	ALMA Band 6	11	2017-11-04 01:30:20	2017-11-04 02:50:43	0:49:57	8.9 m	48.9 m	27.3 m	2.1 GB
Execution_UID_target.ms	ALMA Band 6	11	2017-11-04 01:48:32	2017-11-04 02:47:56	0:49:57	8.9 m	48.9 m	27.3 m	836.9 MB
Session: session_3									
Execution_UID.ms	ALMA Band 6	10	2017-11-08 01:01:01	2017-11-08 02:21:18	0:49:57	8.9 m	48.9 m	28.6 m	1.8 GB
Execution_UID_target.ms	ALMA Band 6	10	2017-11-08 01:19:12	2017-11-08 02:18:32	0:49:57	8.9 m	48.9 m	28.6 m	713.2 MB

Pipeline Users Guide, Chapter 8 for more information.

AM
Execution_UID.ms
Execution_UID_target.ms
Execution UID.ms
Execution_UID_target.ms
Execution_UID.ms
Execution UID target.ms

By Topic

By Task

Click By Task for breakdown of pipeline tasks

Overview of Execution_UID.ms

Observation Execution Time

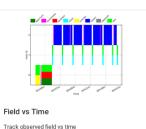
Start Time	2017-11-03 01:26:42
End Time	2017-11-03 02:46:58
Total Time on Source	1:14:20
Total Time on Science Target	0:49:57

LISTOBS OUTPUT

Spatial	Setup
---------	-------

Science Targets

Calibrators

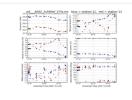

Antenna Setup

Min Baseline	8.9 m
Max Baseline	48.9 m
Number of Baselines	55
Number of Antennas	11

Sci Target

'J0019+2021' and 'J2253+1608'

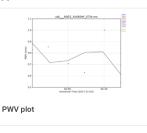
Intent vs Time Track scan intent vs time


Spectral Setup

All Bands	'ALMA Band 6'
Science Bands	'ALMA Band 6'

Sky Setup

lin Elevation	44.37 degrees
lax Elevation	48.35 degrees


Weather

Weather plot

PWV

Mi Ma

A Home By Topic By Task

Pipeline Users Guide, Chapter 8 for more information.

E.

Click on a pipeline task for detailed information and plots \

sk		QA Score
hifa_importdata: Register measurement sets with the pipeline		
hifa_flagdata: ALMA deterministic flagging		
tifa_fluxcalflag: Flag spectral features in solar system flux calibrators		
if_rawflagchans: Flag channels in raw data		
if_refant: Select reference antennas		
tayseab Calculate Tays calibration		
ifa_tsysflag: Flag Tsys calibration		
ifa_antpos: Correct for antenna position offsets		
ifa_wvrgcalflag: Calculate and flag WVR calibration	No QA	
hif_lowgainflag: Flag antennas with low gain		
hif_setmodels: Set calibrator model visibilities		
hifa_bandpassflag: Phase-up bandpass calibration and flagging		
hifa_spwphaseup: Spw phase offsets calibration		
hifa_gfluxscaleflag. Phased-up flux scale calibration + flagging		
hifa_gfluxscale: Transfer fluxscale from amplitude calibrator		
hifa_timegaincal: Gain calibration	X-Y deviation	
hif_applycal Apply calibrations from context		
Mfa_imageprecheck: ImagePreCheck		
Mf_makeimiliat: Set-up Image parameters for calibrator imaging		
Mf_makeimages: Make calibrator images		
Mf_checkproductsize: Check product size		
hifa_exportdata: Prepare pipeline data products for export		
hif_mstransform: Create acience target MS		
hifa_flagtargets: ALMA.Target flagging		
hif_makeimlist. Set-up image parameters for target per-spw continuum imaging		
Mf_findcont: Detect continuum frequency ranges		
Nif_uvcontfit UV continuum fitting		
Mf_uvcontsub: UV continuum subtraction		
hif_makeimages: Make target per-spw continuum images		
hif_makeimlist: Set-up image parameters for target aggregate continuum imaging		
Mf_makeimages: Make target aggregate continuum images		
hif_makeimlist: Set-up image parameters for target cube imaging		
Mf_makeimages: Make target cubes		
hif_makeimilist: Set-up image parameters for representative bandwidth target cube imaging		
hif_makeimages: Make representative bandwidth target cube		


View, view in new tab or download casa-20171110-131234.log (12.1 MB)

View, view in new tab or download casa_commands.log (168.3 KB)

View, view in new tab or download casa_pipescript.py (2.6 KB)

View, view in new tab or download casa_piperestorescript.py (245 byte

Pipeline Users Guide, Chapter 8 for more information.

Examine calibrated phase and amplitude in different dimensions!

Pipeline Users Guide, Chapter 8 for more information.

These are images of the calibrators. Later hif_makeimages steps show the same layout for target continuum and line images. A Home By Topic By Task

Tasks in execution order 1. hifa_importdata

2. hifa_flagdata

3. hifa_fluxcalflag 4. hif_rawflagchans

5. hif_refant 6. h_tsyscal 7. hifa_tsysflag

8. hifa_antpos 9. hifa_wvrgcalflag

10. hif_lowgainflag 11. hif_setmodels 12. hifa_bandpassflag

13. hifa_spwphaseup 14. hifa_gfluxscaleflag

15. hifa_gfluxscale 16. hifa_timegaincal 17. hif_applycal

18. hifa_imageprecheck 19. hif_makeimlist

21. hif_checkproductsize 22. hifa_exportdata 23. hif_mstransform

24. hifa_flagtargets 25. hif_makeimlist

26. hif_findcont 27. hif_uvcont/fit 28. hif_uvcontsub 29. hif_makeimages 30. hif_makeimages 32. hif_makeimages 33. hif_makeimages 34. hif_makeimages

20. Tclean/Makelmages

Make calibrator images

	Image Details					
9	Field	Spw	Pol	Image details		Image result
	J0019+2021 (PHASE)	16	I	centre frequency of image	223.5004GHz (LSRK)	tops image doploymeen field(0021+2001 specifi fier)]
				beam	7.06 x 5.24 arcsec	
9				beam p.a.	86.4deg	
				final theoretical sensitivity	0.0004 Jy/beam	
Θ				cleaning threshold	0.0034 Jy/beam Dirty DR: 8.7e+02 DR correction: 4.4	View other QA Images
				clean residual peak / scaled MAD	6.28	
				non-pbcor image RMS	0.00049 Jy/beam	
				pbcor image max / min	0.344 / -0.00367 Jy/beam	
				fractional bandwidth / nterms	0.89% / 1	
				aggregate bandwidth	2 GHz (LSRK)	
				score	1.00	
				image file	uidA001_X1296_X499.s20_0.J0019+2021_ph.s	pw16.mfs.l.iter1.image
	J0019+2021 (PHASE)	18	I	centre frequency of image	225.3654GHz (LSRK)	type mage displayment field(0013+2021 spin 38 for:1
				beam	7.00 x 5.17 arcsec	
				beam p.a.	85.9deg	
				final theoretical sensitivity	0.00038 Jy/beam	E
				cleaning threshold	0.0034 Jy/beam Dirty DR: 9.1e+02 DR correction: 4.5	View other QA images
				clean residual peak / scaled MAD	6.74	
				non-pbcor image RMS	0.00044 Jy/beam	
				pbcor image max / min	0.343 / -0.00357 Jy/beam	
				fractional bandwidth / nterms	0.89% / 1	
				aggregate bandwidth	2 GHz (LSRK)	
				score	1.00	
				image file	uidA001_X1296_X499.s20_0.J0019+2021_ph.s	pw18.mfs.l.iter1.image
	J0019+2021 (PHASE)	20	I	centre frequency of image	239.2502GHz (LSRK)	type image displayment field (0019+2011 specify deril)
				beam	6.64 x 4.82 arcsec	
				beam p.a.	85.8deg	
				final theoretical sensitivity	0.00043 Jy/beam	E
				cleaning threshold	0.0033 Jy/beam	Access parties Access parties

Cycles 1-4 Packages

roject / OUSet / Executionblock	File	
😑 🚞 Request 1647190514457		
🔻 🖲 🚞 Project 2016.1.00484.L		
Science Goal OUS uid://A001/Xbd4641/X1e		
Group OUS uid://A001/Xbd4641/X1f		
🔻 回 🚞 Member OUS uid://A001/Xbd4641/X20		
SB GW_Lup_a_06_TM1		
🥑 📄 product	2016.1.00484.L_uid_	
🕞 💾 raw	2016.1.00484.L_uid_	A002_Xc04da7_Xea.asdm.sdm
🕞 🖻 raw	2016.1.00484.L uid	A002 Xc067f7 Xa6d.asdm.sdm

Raw data tar balls.

Tar ball with the processed data.

Cycles 5-Present

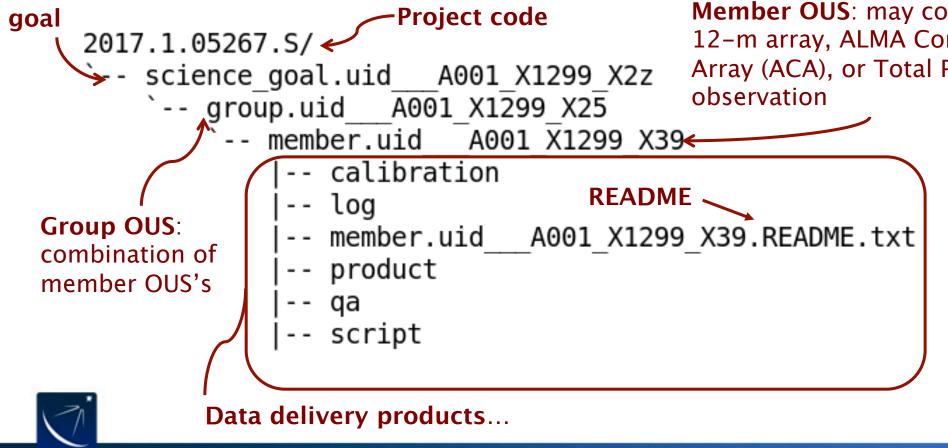
🔻 🔄 🚞 Group OUS uid://A001/X885/X19a	
Member OUS uid://A001/X885/X19b	
SB Pluto_a_06_TM1	
product	2016.1.01100.S uid A001 X885 X19b 001 of 001.tar
🔻 🗹 💾 auxiliary	2016.1.01100.S uid A001 X885 X19b auxiliary.tar
🔲 💾 auxiliary	member.uid A001 X885 X19b.PPR uid A001 X885 X19c.xml.tar
🕞 💾 auxiliary	member.uid A001_X885_X19b.README.txt.tar
🔲 💾 auxiliary	member.uid A001 X885 X19b.antennapos.csv.tar
🕞 💾 auxiliary	member.uid A001 X885 X19b.calimage.pipeline manifest.xml.tar
🔲 💾 auxiliary	member.uid A001 X885 X19b.calimage.product rename.txt.tar
🔲 💾 auxiliary	member.uid A001 X885 X19b.casa commands.log.tar
🔲 💾 auxiliary	member.uid A001 X885 X19b.casa piperestorescript.py.tar
🔲 💾 auxiliary	member.uid A001 X885 X19b.casa pipescript.py.tar
🔲 💾 auxiliary	member.uid A001 X885 X19b.cont.dat.tar
🔲 💾 auxiliary	member.uid A001 X885 X19b.flux.csv.tar
🔲 💾 auxiliary	member.uid A001 X885 X19b.scriptForPI.py.tar
🔲 💾 auxiliary	member.uid A001 X885 X19b.session 3.caltables.tgz.tar
🔲 💾 auxiliary	member.uid A001 X885 X19b.weblog.tgz.tar
🔲 💾 auxiliary	uid A002 Xc4d618 X5750.ms.calapply.txt.tar
🔲 💾 auxiliary	uid A002 Xc4d618 X5750.ms.flagversions.tgz.tar
🔲 💾 auxiliary	uid A002 Xc4d618 X5750 flagtargetstemplate.txt.tar
🔲 💾 raw	2016.1.01100.S uid A002 Xc4d618 X5750.asdm.sdm.tar

NRAO

Cycles 5-Present: Auxiliary Tarball

	▼	21
	▼	
	► SB HC672 b 06 TM1	JUNELL
		member.uid A001 X1383 X222.README.txt
		2018.1.00306.S uid A001 X1383 X222 001 of 001.tar
Tar ball	V C Auxiliary	2018.1.00306.S uid A001 X1383 X222 auxiliary.tar
I di Dali		memberaid A001 X1903 X222.inta caimage.auxproducts.tgz
		member.uid A001 X1383 X222.session_1.auxcaltables.tgz
	🕞 💾 calibration	member.uid A001_X1383_X222.session_1.caltables.tgz
	🔲 📄 calibration	uid A002_Xd64dca_X11d3.ms.calapply.txt
	🔲 💾 calibration	uid A002_Xd64dca_X11d3.ms.flagversions.tgz
	🔲 💾 calibration	uid A002_Xd64dca_X11d3_target.ms.auxcalapply.txt
	🔲 💾 calibration	uid A002_Xd64dca_X1991.ms.calapply.txt
	🔲 💾 calibration	uid A002_Xd64dca_X1991.ms.flagversions.tgz
	🔲 📄 calibration	uid A002_Xd64dca_X1991_target.ms.auxcalapply.txt
Individual	🔲 💾 calibration	uid A002_Xd64dca_X23b0.ms.calapply.txt
Individual	🔲 💾 calibration	uid A002_Xd64dca_X23b0.ms.flagversions.tgz
<u>د</u> اء	🕞 💾 calibration	uid A002_Xd64dca_X23b0_target.ms.auxcalapply.txt
file 👝	🕞 💾 calibration	uidA002_Xd64dca_X2d22.ms.calapply.txt
	🕞 💾 calibration	uid A002_Xd64dca_X2d22.ms.flagversions.tgz
download	🕞 💾 calibration	uidA002_Xd64dca_X2d22_target.ms.auxcalapply.txt
	🕞 💾 log	member.uid A001_X1383_X222.hifa_calimage.casa_commands.log
	🖂 💾 qa	member.uid A001_X1383_X222.hifa_calimage.weblog.tgz
	🖂 💾 qa	member.uid A001_X1383_X222.qa2_report.html
	🖂 💾 qa	member.uidA001_X1383_X222.qa2_report.pdf
	🖂 💾 qa	uidA002_Xd64dca_X11d3.qa0_report.pdf
	🖂 💾 qa	uidA002_Xd64dca_X1991.qa0_report.pdf
	🖂 💾 qa	uidA002_Xd64dca_X23b0.qa0_report.pdf
	🖂 💾 qa	uidA002_Xd64dca_X2d22.qa0_report.pdf
	🕞 💾 script	member.uid A001_X1383_X222.calimage.product_rename.txt
	🕞 💾 script	member.uidA001_X1383_X222.hifa_calimage.casa_piperestorescript.py
	🕞 💾 script	member.uid A001_X1383_X222.hifa_calimage.casa_pipescript.py
	🕞 💾 script	member.uid A001_X1383_X222.hifa_calimage.pipeline_manifest.xml
	🔲 💾 script	member.uidA001_X1383_X222.hifa_calimage.pprequest.xml
	🕞 💾 script	member.uid A001_X1383_X222.scriptForPI.py
20	🕞 🛅 raw	2018.1.00306.S_uidA002_Xd64dca_X11d3.asdm.sdm
	🕞 🛅 raw	2018.1.00306.S_uidA002_Xd64dca_X1991.asdm.sdm
	🕞 🗋 raw	2018.1.00306.S_uidA002_Xd64dca_X23b0.asdm.sdm

NRAC


Cycles 5-Present: Product Tarball

	▶ SB HC672 b 06 TM1	
		memberuid A001 X1283 X222 README tvt
Tar ball —	V 🕞 📄 product	2018.1.00306.S uid A001 X1383 X222 001 of 001.tar
Tur bull	product	member.uid A001_X1383_X222.141-1952_136-1955_sci.spw25.cube.l.mask.fits.gz
	product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw25.cube.l.pb.fits.gz
	product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw25.cube.l.pbcor.fits
	🕞 📄 product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw25.mfs.l.mask.fits.gz
	🕞 📄 product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw25.mfs.l.pb.fits.gz
	🕞 📄 product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw25.mfs.l.pbcor.fits
	🕞 📄 product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw25_27_29_31_33_35.cont.l.mask.fits.gz
	🔲 📄 product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw25_27_29_31_33_35.cont.l.pb.fits.gz
	🔲 📄 product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw25_27_29_31_33_35.cont.l.pbcor.fits
	🕞 📄 product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw27.cube.l.mask.fits.gz
	🕞 💾 product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw27.cube.l.pb.fits.gz
	product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw27.cube.l.pbcor.fits
Les all's states all	product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw27.mfs.l.mask.fits.gz
Individual	product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw27.mfs.l.pb.fits.gz
<u>C'</u> 1 -	product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw27.mfs.l.pbcor.fits
file 🔶 🔶	product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw29.cube.l.mask.fits.gz
	product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw29.cube.l.pb.fits.gz
download	product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw29.cube.l.pbcor.fits
	product	member.uidA001_X1383_X222.141-1952_136-1955_sci.spw29.mfs.l.mask.fits.gz
	product	member.uid A001 X1383 X222.141-1952 136-1955 sci.spw29.mfs.l.pb.fits.gz
	product	member.uid A001 X1383 X222.141-1952 136-1955 sci.spw29.mfs.l.pbcor.fits
	product	member.uid A001 X1383 X222.141-1952 136-1955 sci.spw31.cube.l.mask.fits.gz
	product	member.uid A001 X1383 X222.141-1952 136-1955 sci.spw31.cube.l.pb.fits.gz
	product	member.uid A001 X1383 X222.141-1952 136-1955 sci.spw31.cube.l.pbcor.fits
	product	member.uid A001 X1383 X222.141-1952 136-1955 sci.spw31.mfs.l.mask.fits.gz
	product	member.uid A001 X1383 X222.141-1952 136-1955 sci.spw31.mfs.l.pb.fits.gz
	product	member.uid A001_X1383_X222.141-1952_136-1955_sci.spw31.mfs.l.pbcor.fits
	product	member.uid A001 X1383 X222.141-1952 136-1955 sci.spw33.cube.l.mask.fits.gz member.uid A001 X1383 X222.141-1952 136-1955 sci.spw33.cube.l.pb.fits.gz
1 20	product	· · · · · · · · · · · · · · · · · · ·
	product	
	product	memberuid A001_X1383_X222.141-1952_136-1955_sci.spw33.mfs.Lmask.fits.oz

QA2 Data Products Package: Directory Structure

After un-tarring the processed data we have a directory tree: Science

QA2 Data Products Package: The README

Different format before Cycle 5

-- member.uid___A001_X1299_X39.README.txt

Cycle 0-4

Project code: 2015.1.02572.S PI name: Bob Hops Project title: A first look at Space Configuration: 0.241 km Proposed rms: Proposed beam size: 3.44" CASA version: 4.7.2 Comments from Reducer: This scheduling block was manually calibrated and imaged. Several antennas were flagged for particularly high Tsys. Continuum images were produced using scriptForImaging.py. They include the entire bandwidth. Continuum: Beam= 4.33" by 2.59" RMS = 5.0 Jy/Beam over 7.5 GHzbandwidth

Cycle 4-5

You can download the AQUA quality report for these observations from SnooPI using the following URL...

https://asa.alma.cl/snoopi

If you are not on the project and need the QA2 report of the public data, submit HD ticket

Cycle 5-Now

Details about the quality of the data processing are in

qa/ member.uid___A001_X135e_X8f.q a2_report.pdf (or html)

Details about the processing are in

qa/*weblog.tgz

Details about the quality of the raw data are in

qa/*qa0_report.pdf (or html)

|-- calibration Pipeline Calibration Tables

- -- member.uid____A001_X1299_X39.hifa_calimage.auxproducts.tgz
- -- member.uid A001 X1299 X39.session 1.caltables.tgz
- -- uid ____A002_Xc8ed15_X1a9.ms.calapply.txt
- -- uid _____ A002_Xc8ed15_X1a9.ms.flagversions.tgz
- -- uid A002 Xc8ed15 X1a9 target.ms.auxcalapply.txt

calibration: Manual Calibration Tables uid ____A002_Xd81670_X867e.calibration.plots.tgz uid ____A002_Xd81670_X8a51.calibration.plots.tgz uid ____A002_Xd81670_X8d91.calibration.plots.tgz uid ____A002_Xd81670_X867e.calibration.tgz uid ____A002_Xd81670_X8a51.calibration.tgz uid ____A002_Xd81670_X8a51.calibration.tgz

All flags will be restored during calibration

QA2 Data Products Package: the processed data

Pipeline Calibration Log and Products: CASA Log file (non-executable)

loa ➡ member.uid A001 X1299 X39.hifa calimage.casa commands.log member.uid A001 X1299 X39.README.txt product member.uid A001 X1299 X39.SOURCE sci.spw25 27 29 31.cont.I.pb.fits -- member.uid A001 X1299 X39.SOURCE sci.spw25 27 29 31.cont.I.pbcor.fits -- member.uid A001 X1299 X39.SOURCE sci.spw25.cube.I.mask.fits A001 X1299 X39.SOURCE sci.spw25.cube.I.pbcor.fits -- member.uid A001 X1299 X39.SOURCE sci.spw25.cube.I.pb.fits.gz -- member.uid A001 X1299 X39.J0117p1418 ph.spw31.mfs.I.pbcor.fits -- member.uid member.uid A001 X1299 X39.J0117p1418 ph.spw31.mfs.I.pb.fits.gz

Calibration and Target images produced from QA2

MANUAL Calibration Log and Products:

CASA Log file (non-executable)

log:

member.uid ___A001_X122e_X2945.2018.1.05432.S_uid ___A001_X122e_X2945.log.tgz uid ___A002_Xd81670_X867e.log.tgz
member.uid ___A001_X122e_X2945.Imaging.log.tgz uid ___A002_Xd81670_X8a51.log.tgz

product:

member.uid A001 X122e X2945.SOURCE sci.spw13 15 17 19.mfs.A.pbcor.fits member.uid A001 X122e X2945.SOURCE sci.spw13 15 17 19.mfs.I.manual.pbcor.fits member.uid A001 X122e X2945.SOURCE sci.spw13 15 17 19.mfs.I.manual.pb.fits.qz member.uid A001 X122e X2945.SOURCE sci.spw13 15 17 19.mfs.IQUV.manual.mask.tgz member.uid A001 X122e X2945.SOURCE sci.spw13 15 17 19.mfs.IQUV.manual.pbcor.fits member.uid A001 X122e X2945.SOURCE sci.spw13 15 17 19.mfs.IQUV.manual.pb.fits.gz member.uid A001 X122e X2945.J0348-2749 ph.spw13 15 17 19.mfs.I.manual.pbcor.fits member.uid A001 X122e X2945.J0348-2749 ph.spw13 15 17 19.mfs.I.manual.pb.fits.gz member.uid A001 X122e X2945.J0423-0120 pol.spw13 15 17 19.mfs.I.manual.pbcor.fits member.uid A001 X122e X2945.J0423-0120 pol.spw13 15 17 19.mfs.I.manual.pb.fits.gz

Calibration and Target images produced from QA2

QA2 Data Products Package: the processed data

Pipeline Calibration Scripts and Weblog: Weblog contains plots and images from reduction and imaging. Unpack this for lots of information! \

-- qa
 `-- member.uid___A001_X1299_X39.hifa_calimage.weblog.tgz
-- script

- |-- member.uid A001 X1299 X39.calimage.pipeline manifest.xml
 - -- member.uid A001 X1299 X39.calimage.product rename.txt
- -- member.uid _____ A001_X1299_X39.hifa_calimage.casa_piperestorescript.py
- -- member.uid _____A001_X1299_X39.hifa_calimage.casa_pipescript.py
- -- member.uid____A001_X1299_X39.scriptForPI.py 🔶

Run scriptForPI.py to restore calibration

Commands to re-run the pipeline

QA2 Data Products Package: the processed data

MANUAL Calibration Scripts and QA2 report:

qa:

member.uid A001 X122e X2945.ga2 report.html uid A002 Xd81670 X867e ga2 part2.png uid A002 Xd81670 X8d91.ga0 report.pdf uid A002 Xd81670 X8d91 textfile.txt member.uid A001 X122e X2945.qa2 report.pdf A002 Xd81670 X867e ga2 part3.png uid uid A002 Xd81670 X8d91 ga2 part1.png uid A002 Xd81670 X867e.ga0 report.pdf uid A002 Xd81670 X867e textfile.txt uid A002 Xd81670 X8d91 qa2 part2.png A002 Xd81670 X867e qa2 part1.png uid A002 Xd81670 X8a51.qa0 report.pdf uid uid A002 Xd81670 X8d91 ga2 part3.png

script:

member.uid ____A001_X122e_X2945.calimage.product_rename.txt
member.uid ____A001_X122e_X2945.scriptForPolCalibration.py

uid ____A002_Xd81670_X8a51.ms.wvrgcal.txt
member.uid ____A001_X122e_X2945.scriptForImagingPrep.py
uid ____A002_Xd81670_X867e.ms.scriptForCalibration.py
uid ____A002_Xd81670_X8d91.ms.scriptForCalibration.py
member.uid _____A001_X122e_X2945.scriptForImaging.py

QA2 reports contain plots and images from reduction and imaging. Not as much information as weblog...

Resources After Delivery

- HelpDesk: help.almascience.org
- Face to Face visits in Charlottesville: science.nrao.edu/ facilities/alma/visitors-shortterm

						Search all	of NRAO
Home	About NRA	10	Science	Facilities	Observing	Opportunities	Futures
MA/NAASC V	/LA GBT VL	BA C	DL				
ilities > ALMA/NAA	SC > Data Reduction	n Visitors t	to the North American AL	LMA Science Center (NAASC	:)		
ALMA/NAAS	С				e North Amei	ican ALMA Scie	ence
Proposing		Cen	ter (NAASC)				
Observing		by <u>D</u>	Dong-Chan Kim — last	modified Jan 30, 2013			
Observing		by <u>D</u>	Dong-Chan Kim — last	modified Jan 30, 2013			
5	opment	Dat	a Reduction Visito	ors are ALMA users com			
Observing ALMA Develo Data Reducti	-	Data	a Reduction Visito				17 as
ALMA Develo	ion	Dat NAA obta	a Reduction Visito	ors are ALMA users com ss for expert assistance			TIL
ALMA Develo Data Reducti Data Archive	ion	Data NAA obta Elig We o	a Reduction Visito ASC for a week or les aining the optimum r gibility expect that the majo	ors are ALMA users com ss for expert assistance results from their data. ority of short-term visit	with ors to the		
ALMA Develo Data Reducti Data Archive Scientific Vis	ion	Data NAA obta Elig We o NAA facil	a Reduction Visito SC for a week or les aining the optimum r gibility expect that the majo ASC will come for acc lities, and for expert	ors are ALMA users com ss for expert assistance results from their data. ority of short-term visit cess to NAASC computi assistance with re-prod	with ors to the ng cessing and		
ALMA Develo Data Reducti Data Archive Scientific Vis	ion	Data NAA obta Elig We o NAA facil anal	a Reduction Visito ASC for a week or les aining the optimum r gibility expect that the majo ASC will come for acc lities, and for expert lyzing their ALMA da	ors are ALMA users com ss for expert assistance results from their data. pority of short-term visit cess to NAASC computin	with ors to the ng cessing and the		
ALMA Develo Data Reducti Data Archive	ion	Dat NAA obta Elig We e NAA facil anal succ sets	a Reduction Visito ASC for a week or les aining the optimum r gibility expect that the majo ASC will come for acc lities, and for expert lyzing their ALMA da cessful interpretation s. To meet this need,	ors are ALMA users com ss for expert assistance results from their data. ority of short-term visit cess to NAASC computi assistance with re-pro ta, which is central to t of complex interferom , the NAASC runs a visit	with ors to the ng cessing and the tetric data tor		appete of
ALMA Develo Data Reducti Data Archive Scientific Vis HelpDesk	ion sitor Info Press	Dat: NAA obta Elig We e NAA facil anal succ sets prog ALM	a Reduction Visito SC for a week or les aining the optimum r gibility expect that the majo SC will come for acc lities, and for expert lyzing their ALMA da cessful interpretatior s. To meet this need, gram. In some cases	ors are ALMA users com ss for expert assistance results from their data. ority of short-term visit cess to NAASC computin assistance with re-pro- ta, which is central to t of complex interferom the NAASC runs a visit short-term visits may gning scheduling blocks	with ors to the ng cessing and the tetric data tor be scheduled for assi	stance with the technical rying out archival project	

For more info: https://almascience.nrao.edu/

ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction and operation of ALMA. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

