

Introduction to CASA and Data Structure Emmanuel Momjian

- CASA is the offline data reduction package for ALMA and the (Jansky) VLA
 - data from other telescopes usually work, too, but not primary goal of CASA).
- Import/export data, edit, calibrate, image, analyze.
- Also supports single dish (based on ATNF's ASAP).
- CASA has many tasks and a LOT of tools.

- Easy to write scripts and tasks.
- Lots of documentation, reduction tutorials, helpdesk.
- CASA has some of the most sophisticated algorithms implemented (multi-scale clean, Taylor term expansion for wide bands, W-term projection, OTF mosaicing, etc.)
- It has an active Algorithm Research Group.

- Web site: <u>http://casa.nrao.edu/</u>
- Available for both Linux and Mac OS.
 - Make sure to subscribe to the CASA mailing list for announcements of new releases, workshops, etc... (casa-announce), or for critical bugs and code updates (casa-users) at:

<u>http://casa.nrao.edu/</u> \rightarrow Getting Help \rightarrow Mailing lists

- Documentation is available at <u>http://casa.nrao.edu/</u> → 'Documentation'
- Training material is available at http://casaguides.nrao.edu
- For help, use the NRAO help desk at: <u>http://help.nrao.edu</u>

choose the 'CASA Data Reduction' Department

Outline

- CASA startup
- CASA basic python interface
- Tasks and tools
- The Measurement Set
- Data selection syntax
- Visualization tools
- Make your own task!

CASA Startup

	> casa	
	==>	
	The start-up time of CASA may vary depending on whether the shared libraries are cached or not.	
	======================================	
	> CrashReporter initialized. Enter doc('start') for help getting started with CASA Using matplotlib backend: TkAgg	
	CASA < 1 >:	
	Log Messages (:/Users/emomjian/casa-20180907-013859.log)	
Time 201	Priority Origin Message 18-09-07 01:39:13 INFO ::casa	

NSF)

NRÃO

CASA Interface

- Uses IPython for its command line interface:
 - Filesystem navigation, shell access
 - Namespace completion (<TAB>)
 - Session logging
 - ipython.log ipython command history
 - casapy.log casa messages
 - Numbered input/output with command history, full searching

Python Pointers

• to run a .py script:

execfile('<scriptname>')
 example: execfile('ngc5921_demo.py')

- indentation matters!
 - be careful when doing cut-and-paste to Python
 - cut a few (4-6) lines at a time
- Python counts from 0 to n-1!
- variables are global when using task interface
- Task names are objects (not variables)

Tasks and tools in CASA

- Tasks high-level functionality, well difined purpose
 - function call or parameter handling interface
 - these are what you should use in tutorial
- Tools complete functionality
 - tool.method calls, used by tasks
 - sometimes shown in tutorial scripts
- Shell commands can be run with a leading exclamation mark <u>!du -hs</u>

- All CASA tasks can be listed by *tasklist*.
- The tasks are grouped as:
 - Import/export
 - Information
 - Editing
 - Manipulation
 - Calibration
 - Modeling

- Imaging
- Analysis
- Visualization
- Simulation
- Single dish
- Utility
- AIPS CASA dictionary is available at <u>https://safe.nrao.edu/wiki/bin/view/Software/CASA-AIPSDictionary</u>

Tasks

To list the tasks: tasklist

Import/export	Information	Editing	Manipulation	
exportasdm exportfits exportuvfits importada importfits importfits importmiriad importuvfits importvla (importevla) (importgmrt)	imhead imreframe imstat imval listcal listfits listhistory listobs listpartition listvis plotus vishead visstat visstat2 visstatold (asdmsummary) (listsdm) (makemask)	fixplanets fixvis flagcmd flagdata flagmanager msview plotms	<pre>concat conjugatevis cvel fixvis hanningsmooth imhead mstransform oldhanningsmooth oldsplit partition plotms split testconcat uvcontsub virtualconcat vishead (cvel2) (statwt) (uvcontsub3)</pre>	
Calibration	Modeling	Imaging		
accum applycal bandpass blcal calstat clearcal delmod fixplanets fluxscale ft gaincal gencal initweights listcal plotants plotbandpass plotcal predictcomp rerefant setjy smoothcal uvmodelfit uvsub wvrgcal	predictionp setjy uvcontsub uvmodelfit uvsub (uvcontsub3)	clean deconvolve feather ft imcontsub (boxit) (csvclean) (tclean) (tclean2) (widebandpbcor) {mosaic} {widefield}	Analysis imcollapse imcontsub imdev imfit imhead imhistory immath immoments impbcor impv imrebin imreframe imregrid imsmooth imsubimage imtrans imval listvis rmfit slsearch specflux specsmooth splattotable (specfit) (spxfit)	
Visualization	Simulation	Single dish	Utility	
clearplot imview msview plotants plotbandpass plotcal plotms plotprofilemap plotuv viewer (plotweather)	simanalyze simobserve (simalma)	<pre>importasap sdbaseline sdcal sdfit sdfixscan sdimaging sdsmooth (sdgaincal)</pre>	browsetable caltabconvert clearplot clearstat concat conjugatevis find help par.parameter help taskname imview msview plotms rmtables startup taskhelp tasklist testconcat toolhelp virtualconcat	

To see list of tasks with short help: taskhelp

Available tasks:	lp()
accum	: Accumulate incremental calibration solutions into a calibration table
applycal	: Apply calibrations solutions(s) to data
asdmsummary	: Summarized description of an ASDM dataset.
autoclean	: CLEAN an image with automatically-chosen clean regions.
bandpass	: Calculates a bandpass calibration solution
blcal	: Calculate a baseline-based calibration solution (gain or bandpass)
boxit	: Box regions in image above given threshold value.
browsetable	: Browse a table (MS, calibration table, image)
calstat	: Displays statistical information on a calibration table
	: Convert old-style caltables into new-style caltables.
clean	: Invert and deconvolve images with selected algorithm
clearcal	: Re-initializes the calibration for a visibility data set
clearplot	: Clear the matplotlib plotter and all layers
clearstat	: Clear all autolock locks
concat	: Concatenate several visibility data sets.
conjugatevis	: Change the sign of the phases in all visibility columns.
csvclean	: This task does an invert of the visibilities and deconvolve in the image plane.
cvel	: regrid an MS to a new spectral window / channel structure or frame
cvel2	: Regrid an MS or MMS to a new spectral window, channel structure or frame
deconvolve	: Image based deconvolver
delmod	: Deletes model representations in the MS
exportasdm	: Convert a CASA visibility file (MS) into an ALMA or EVLA Science Data Model
exportfits	: Convert a CASA image to a FITS file
exportuvfits	: Convert a CASA visibility data set to a UVFITS file:
feather	: Combine two images using their Fourier transforms
find	: Find string in tasks, task names, parameter names:
fixplanets	: Changes FIELD and SOURCE table entries based on user-provided direction or POINTING table, optionally fixes the UVW code
fixvis	: Recalculates (u, v, w) and/or changes Phase Center
flagcmd	: Flagging task based on batches of flag-commands
flagdata	: All-purpose flagging task based on data-selections and flagging modes/algorithms.
flagmanager	: Enable list, save, restore, delete and rename flag version files.
fluxscale	: Bootstrap the flux density scale from standard calibrators
ft	: Insert a source model a visibility set:
gaincal	: Determine temporal gains from calibrator observations
gencal	: Specify Calibration Values of Various Types
hanningsmooth	: Hanning smooth frequency channel data to remove Gibbs ringing
imcollapse	: Collapse image along one axis, aggregating pixel values along that axis.
imcontsub	: Estimates and subtracts continuum emission from an image cube
imdev	: Create an image that can represent the statistical deviations of the input image.
imfit	: Fit one or more elliptical Gaussian components on an image region(s)
imhead	: List, get and put image header parameters
imhistory	: Retrieve and modify image history
immath	: Perform math operations on images
immoments	: Compute moments from an image
impbcor	: Construct a primary beam corrected image from an image and a primary beam pattern.
importasap	: Convert ASAP Scantable data into a CASA visibility file (MS)
importasdm	: Convert an ALMA Science Data Model observation into a CASA visibility file (MS)
importatca	: Import ATCA RPFITS file(s) to a measurement set
importevla	: Convert an Science Data Model observation into a CASA Measurement Set
importfits	: Convert an image FITS file into a CASA image
importfitsidi	: Convert an Image FITS FITE FITE A CASA Image
importgmrt	: Convert a UVFITS file to a CASA visibility data set
importmiriad	: Convert a Wirids visibility file into a CASA MeasurementSet
importnro	: Convert a miriad visibility file into a CASA measurementset
importuvfits	: Convert NOSIAR data into a CASA Visibility file (NS) : Convert a UVFITS file to a CASA visibility data set
importuviits	: Lonvert a UVFIIS THE to a UASA VISIDILITY data set : Import VLA archive file(s) to a measurement set
impv impohin	: Construct a position-velocity image by choosing two points in the direction plane.
imrebin	: Rebin an image by the specified integer factors
imreframe	: Change the frame in which the image reports its spectral values
imregrid	: regrid an image onto a template image
imsmooth	: Smooth an image or portion of an image
imstat	: Displays statistical information from an image or image region
imsubimage	: Create a (sub)image from a region of the image
imtrans	Reorder image axes
imval	: Get the data value(s) and/or mask value in an image.
imview	: View an image
initweights	: Initializes weight information in the MS
listcal	: List antenna gain solutions
listfits	: List the HDU and typical data rows of a fits file:
listhistory	: List the processing history of a dataset:
listobs	: List the summary of a data set in the logger or in a file
listpartition	: List the summary of a multi-MS data set in the logger or in a file
listsdm	: Lists observation information present in an SDM directory.
listvis	: List measurement set visibilities.
makemask	: Makes and manipulates image masks
mosaic	: Create a multi-field deconvolved image with selected algorithm
mstransform	: Split the MS, combine/separate/regrid spws and do channel and time averaging
msuvbin	: grid the visibility data onto a defined uniform grid (in the form of an ms); multiple MS's can be done onto the same g

Task Interface

• parameters are set as global Python variables

(set) <param> = <value>
(e.g., vis = 'ngc5921.demo.ms')

- using inp, default, saveinputs, tget, tput
- execute

<taskname> or go (e.g. clean())

Task Interface

Call a task by

>inp <taskname>

if default values are desired, first type

>default <taskname>, followed by inp

# gaincal :: Det	termine	temporal gain	s fro	om calibrator observations
vis	=	1.1	#	Name of input visibility file
caltable	=	1.1	#	Name of output gain calibration table
field	=	1.1	#	Select field using field id(s) or field name(s)
spw	=	1.1	#	Select spectral window/channels
intent	=	1.1	#	Select observing intent
selectdata	=	True	#	Other data selection parameters
timerange	=		#	Select data based on time range
uvrange	=	1.1	#	Select data within uvrange (default units meters)
antenna	=		#	Select data based on antenna/baseline
scan	=		#	Scan number range
observation	=		#	Select by observation ID(s)
msselect	=		#	Optional complex data selection (ignore for now)
solint	=	'inf'	#	Solution interval: egs. 'inf', '60s' (see help)
combine	=		#	Data axes which to combine for solve (obs, scan, spw, and/or field)
preavg	=	-1.0	#	Pre-averaging interval (sec) (rarely needed)
refant	=		#	Reference antenna name(s)
refantmode	=	'flex'	#	
minblperant	=	4	#	Minimum baselines _per antenna_ required for solve
minsnr	=	3.0	#	Reject solutions below this SNR
solnorm	=	False	#	Normalize average solution amplitudes to 1.0 (G, T only)
gaintype	=	'G'	#	Type of gain solution (G,T,GSPLINE,K,KCROSS)
smodel	=	[]	#	Point source Stokes parameters for source model.
calmode	=	'ap'	#	Type of solution: ('ap', 'p', 'a')
append	=	False	#	Append solutions to the (existing) table
docallib	=	False	#	Use callib or traditional cal apply parameters
gaintable	=	[]	#	Gain calibration table(s) to apply on the fly
gainfield	=	[]	#	Select a subset of calibrators from gaintable(s)
interp	=	[]	#	Temporal interpolation for each gaintable (=linear)
spwmap	=	[]	#	Spectral windows combinations to form for gaintables(s)
parang	=	False	#	Apply parallactic angle correction on the fly

Task Execution

- Two ways to invoke:
 - call from Python as functions with arguments taskname(arg1=val1, arg2=val2, ...), like clean(vis= 'input.ms', imagename= 'galaxy', selectvis=T, robust=0.5, imsize=[200,200])

unspecified parameters will be defaulted

use standard tasking interface.

Parameter Checking

CASA <5>: inp -> inp() # gaincal :: Determine temporal gains from calibrator observations vis = 1.1 # Name of input visibility file 1.1 # Name of output gain calibration table caltable = 1.1 Select field using field id(s) or field name(s) field # = 1.1 Select spectral window/channels # SDW = 1.1 intent = # Select observing intent = selectdata # Other data selection parameters True 1.1 timerange # Select data based on time range = 1.1 # Select data within uvrange (default units meters) uvrange = 1.1 # Select data based on antenna/baseline antenna = 1.1 scan = # Scan number range 1.1 Select by observation ID(s) observation = # 1.1 Optional complex data selection (ignore for now) msselect # = solint 'inf' 60s' (see help) = # Solutio erroneous 1.1 olve (obs, scan, spw, and/or field) combine = # Data a rely needed) # Pre-ave preavg -1.0= values in re . . Referer refant = # refantmode 'flex' ference ancenna moue = Minimum baselines _per antenna_ required for solve minblperant = 4 Reject solutions below this SNR minsnr = 3.0 solnorm False # Normalize average solution amplitudes to 1.0 (G, T only) = = gaintype 'G Type of gain solution (G,T,GSPLINE,K,KCROSS) # smodel = # Point source Stokes parameters for source model. calmode 'noidea' # Type of solution: ('ap', 'p', 'a') = append = False # Append solutions to the (existing) table = False docallib # Use callib or traditional cal apply parameters [] # Gain calibration table(s) to apply on the fly gaintable = gainfield [] # Select a subset of calibrators from gaintable(s) = [] interp = # Temporal interpolation for each gaintable (=linear) Spectral windows combinations to form for gaintables(s) spwmap [] # = Apply parallactic angle correction on the fly False # parang =

Help on Tasks

In-line help for all tasks (help <taskname>)

>help gaincal

Methods defined here:

| __call__(self, vis=None, caltable=None, field=None, spw=None, intent=None, selectdata=None None, refant=None, refantmode=None, minblperant=None, minsnr=None, solnorm=None, gaintype=None table=None, gainfield=None, interp=None, spwmap=None, parang=None)

Determine temporal gains from calibrator observations

Detailed Description:

The complex gains for each antenna/spwid are determined from the data column (raw data), divided by the model column, for the specified fields. The gains can be obtained for a specified solution interval for each spectral window, or by a spline fit to all spectral windows simultaneously.

Previous calibrations (egs. bandpass) should be applied on the fly.

Arguments :

vis: Name of input visibility file
 Default Value:

caltable: Name of output gain calibration table Default Value:

field: Select field using field id(s) or field name(s)
 Default Value:

spw: Select spectral window/channels
 Default Value:

intent: Select observing intent
 Default Value:

selectdata: Other data selection parameters Default Value: True

timerange: Select data based on time range Default Value:

uvrange: Select data within uvrange (default units meters)
Default Value:

Tools in CASA

- What if there's no task?
- \rightarrow use CASA tools (tasks are built upon tools)
- tools are functions/methods
 - call from casapy as <tool>.<method>()
 - default tool objects are pre-constructed
 - e.g. imager (im) , calibrater (cb), ms (ms) , etc. (see toolhelp)

CASA Tool List

To list the default tools:

><u>toolhelp</u>

~1000 tools available

[CASA <7>: toolhelp -----> toolhelp()

Available tools:

- af : Agent flagger utilities
- at : Juan Pardo ATM library
- ca : Calibration analysis utilities
- cb : Calibration utilities
- cl : Component list utilities
- cp : Cal solution plotting utilities
- cs : Coordinate system utilities
- cu : Class utilities
- dc : Deconvolver utilities
- fi : Fitting utilities
- fn : Functional utilities
- ia : Image analysis utilities
- im : Imaging utilities
- lm: linear mosaic
- me : Measures utilities
- ms : MeasurementSet (MS) utilities
- msmd : MS metadata accessors
- mt : MS transformer utilities
- qa : Quanta utilities
- pm : PlotMS utilities
- po : Imagepol utilities
- rg : Region manipulation utilities
- sdms : MeasurementSet (MS) utilities for Single-Dish
- sl : Spectral line import and search
- sm : Simulation utilities
- tb : Table utilities (selection, extraction, etc)
- tp : Table plotting utilities
- vp : Voltage pattern/primary beam utilities

- pl : pylab functions (e.g., pl.title, etc)
- ____

The Measurement Set

- The MS is a <u>directory</u> on disk, it consists of a MAIN table and sub-tables.
 - The MAIN table contains the visibility data. It consists of the table.* files.
 - The sub-tables (e.g. FIELD, SOURCE, ANTENNA, etc.) contain auxiliary and secondary information.
 - The sub-tables are sub-directories.
- To copy: must use cp -rf to get contents
- Best to remove MS with rmtables('filename')

Example MS

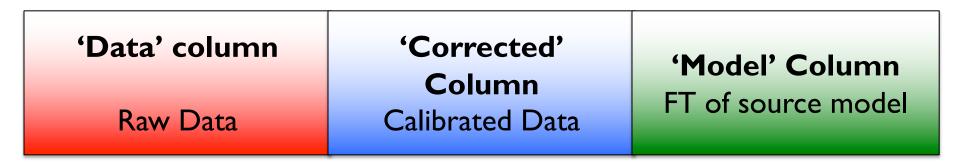
CASA <31>: ls day2_TDEM0003_20s_full/							
ANTENNA/	STATE/	table.f18_TSM1	table.f25_TSM1				
DATA_DESCRIPTION/	table.dat	table.f19	table.f3				
FEED/	table.f1	table.f2	table.f4				
FIELD/	table.f10	table.f20	table.f5				
FLAG_CMD/	table.f11	table.f21	table.f6				
HISTORY/	table.f12	table.f21_TSM0	table.f7				
OBSERVATION/	table.f13	table.f22	table.f8				
POINTING/	table.f14	table.f22_TSM1	table.f9				
POLARIZATION/	table.f15	table.f23	table.info				
PROCESSOR/	table.f16	table.f23_TSM1	table.lock				
SORTED_TABLE/	table.f17	table.f24	WEATHER/				
SOURCE/	table.f17_TSM1	table.f24_TSM1					
SPECTRAL_WINDOW/	table.f18	table.f25					

CASA <32>: ls day2_TDEM0003_20s_full/ANTENNA/ table.dat table.f0 table.info table.lock

Data Selection Syntax

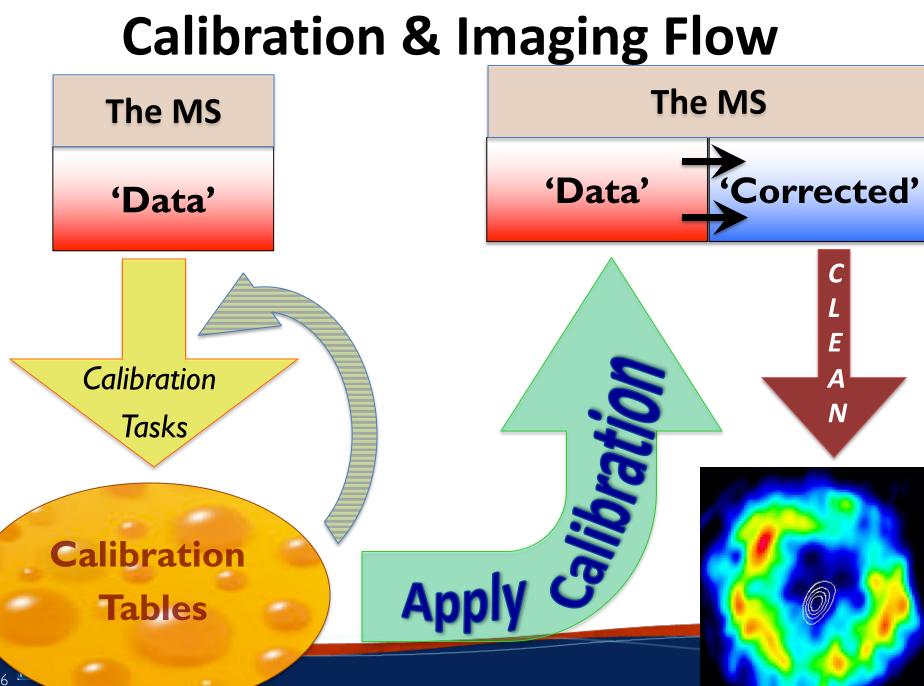
<u>field</u> - string with source name or field ID

- can use '*' as wildcard, first checks for name, then ID
- example: field = '1331+305' ; field = '3C*' ; field = '0,1,4~5'
- <u>spw</u> string with spectral window ID plus channels
 - use ':' as separator of spw from optional channelization
 - example: spw = '0~2' ; spw = '1:10~30'


Selection Syntax

<u>antenna</u> - string with antenna name or ID

- first check for name, then pad name, then ID
- example: antenna = '1~5,11' ; antenna = 'ea*', '!ea01'
- For a baseline, use: antenna = 'ea01&ea10'
- <u>timerange</u> string with date/time range
 - specify 'T0~T1', missing parts of T1 default to T0.
 - example: timerange = '2007/10/16/01:00:00~06:30:00'
 - If year, month, day are not specified → defaults to 1st day in the data set.

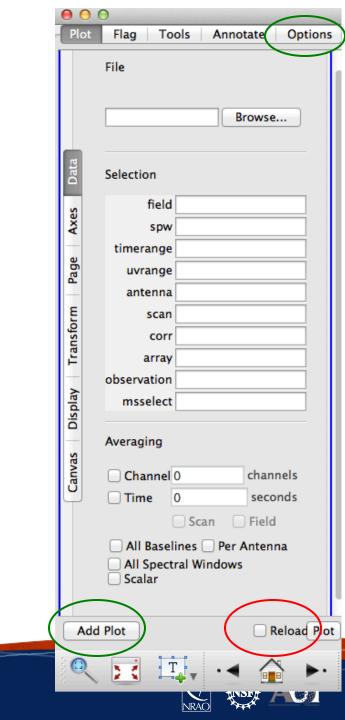

The MS structure

- When you load your data from the archive, your MS will only have the 'Data' column.
- The other two columns can be created by various means.
- The creation of the other two columns \rightarrow MS tripling in size.

Visualization Tools

- Visibilities: plotms, msview
- Images: viewer, imview
- Calibration tables: plotcal (or plotms)
- Any table values: browsetable
- Single dish: sdplot
- Plot anything: use python's matplotlib

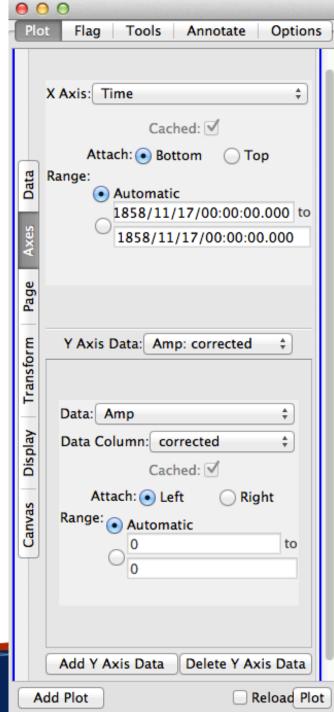
Data Review: plotms (unix command line casaplotms)


	0	0	Top Tabs			PlotM	S						
Side Tabs	Canvas Display Transform Page Axes Data	Flag File Selection timera uvra anto observa msso Averagi C (a observa msso Averagi	Browse Dn field spw ange ange enna scan Ontrol Pane ation elect ing nnel 0 channel e 0 second Scan Field Baselines Per Antenna Spectral Windows						Grap	hics	Panel		
20	Add	d Plot		ad Plot			0	4			Tools P	lanel	

Control Panel: Data

Check the 'Reload' box if the MS has been modified through another task.

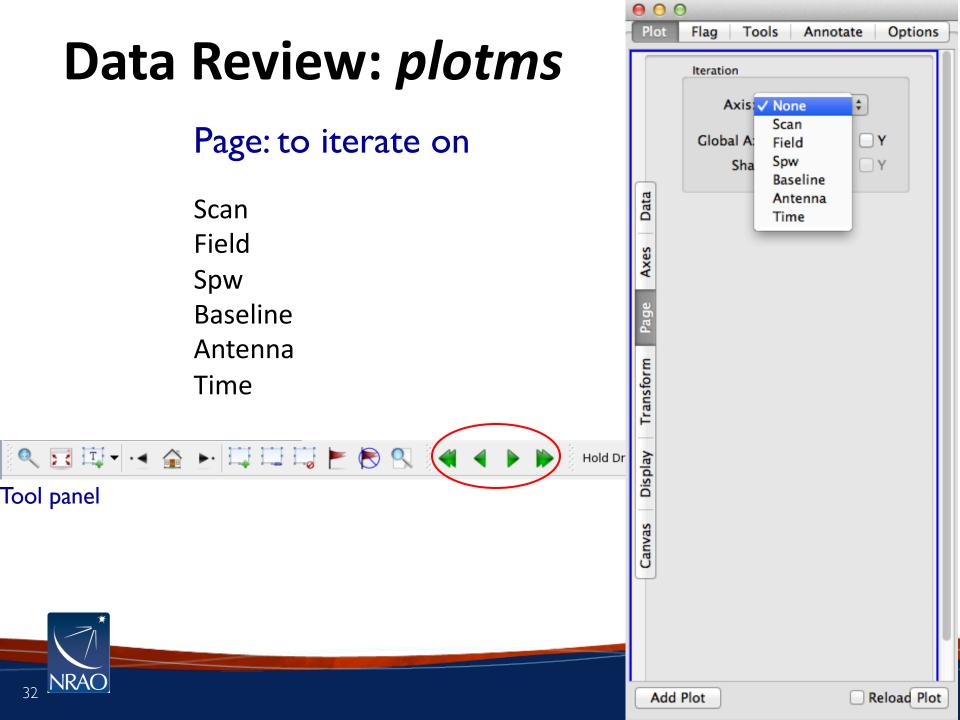
Use the 'Options' to divide the screen into multiple panels, and 'Add plot' to be able make plots of multiple data sets (or one data set but using different axes) onto the graphics panel.



MS lds and other meta info:

Axes

30

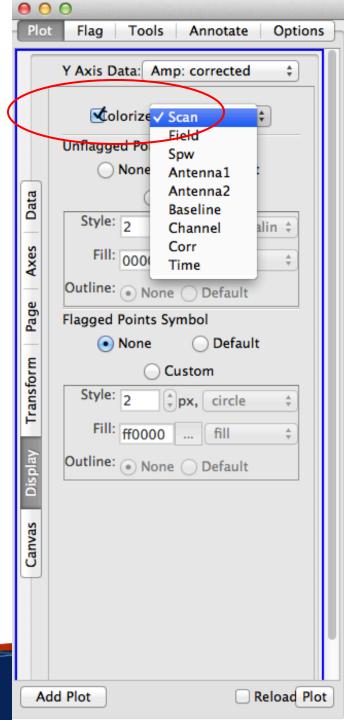


Observational geometry: 'uvdist' (meters) 'uvwave'='uvdistl'='uvdist_l' (wavelengths, per channel) 'u' (meters) 'v' (meters) 'w' (meters) 'azimuth' (at array reference; degrees) 'elevation' (at array reference; degrees) 'hourang'='hourangle' (at array reference; hours) 'parang'='parangle'='parallacticangle' (at array reference; degrees) Antenna-based (only works vs. data Ids): 'ant'='antenna' 'ant-azimuth' 'ant-elevation' 'ant-parang'='ant-parangle'

Axes

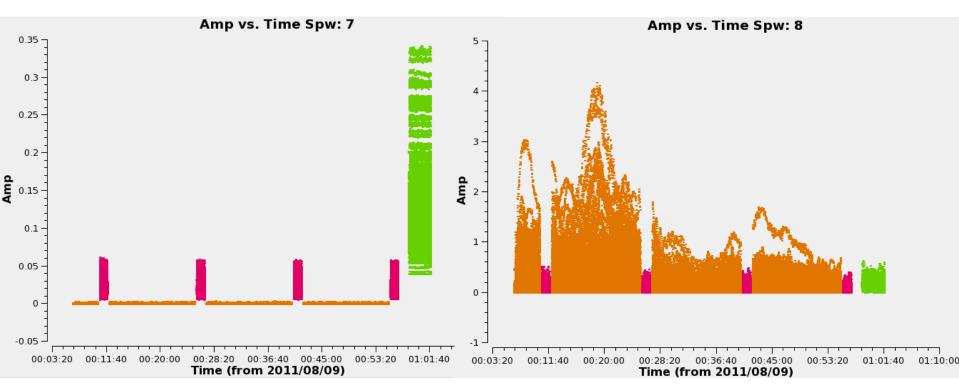
0								
Plo	t Flag	Tools	Annotate	Options				
Display Transform Page Axes Data	X Axis: T Atta Range: • • • • • • • • • • • • • • • • • • •	ime Cac ach: • Bo Automati 1858/11 1858/11 Data: Am Data: Am	hed: ttom To ttom To 17/00:00:00 /17/00:00:00 p: corrected prrected hed:	¢ 0.000 to				
Canvas		• Automa 0 0		to				
	Add Y A	xis Data	Delete Y A	kis Data Reload Plot				
A				leload Plot				

Transformations

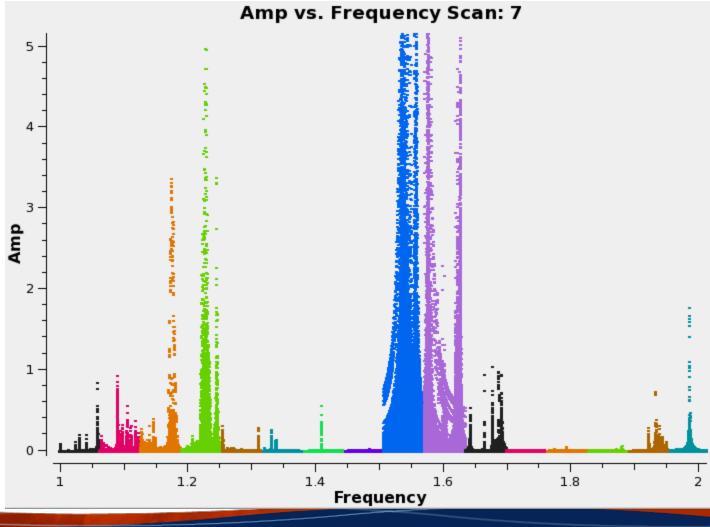

Frame: TOPO, GEO, BARY, LSRK, LSRD, etc..

e (Pla) () ot Flag Tools Annotat	e Options
	Transformations	
	Frame: BARY \$	
	Velocity Defn: OPTICAL	÷
Data		
Page Axes Data	Rest Freq (MHz): 1420.4057	52
A	Phase center shift (arcsec):	
Page	dX: 0 dY: 0	
orm		
Transi		
lay		
Disp		
Canvas Display Transform		
G		
	dd Plot	Reload Plot

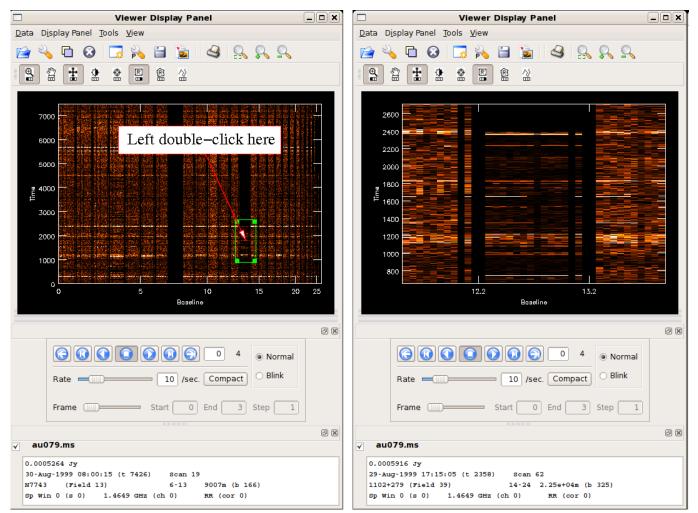
Display


Colorize by: Scan Field Spw Antenna1 Antenna2 Baseline Channel Correlation Time

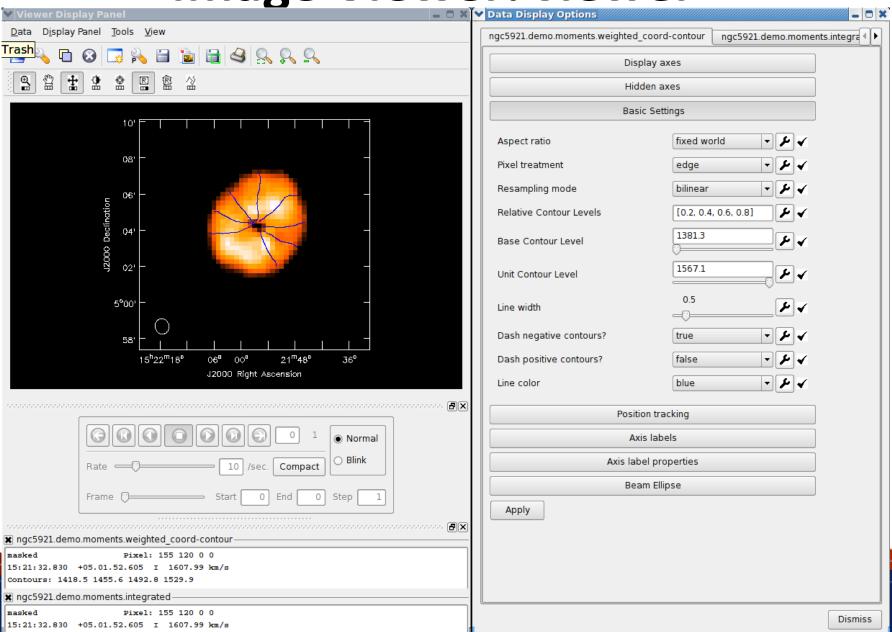
NRAO


Example: x-axis: time, y-axis: amp

iter: spw (with all channels averaged)

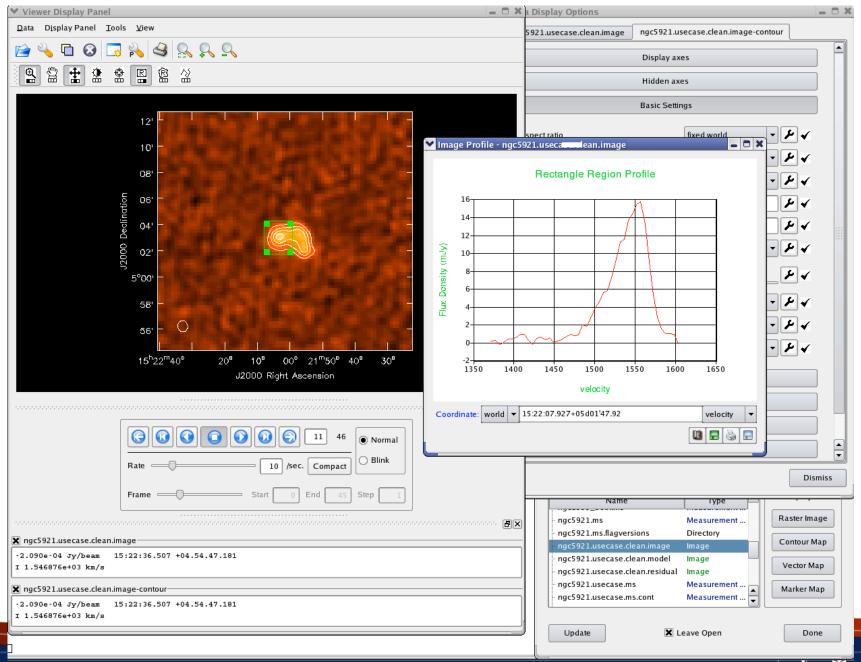


- Example: x-axis: frequency, y-axis: amp
- iteration: scan



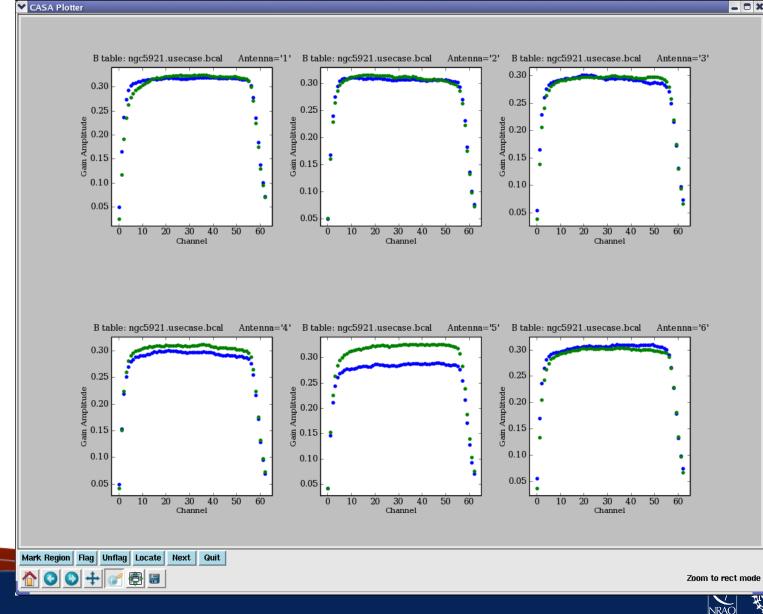
Data review: msview

Image Viewer: viewer

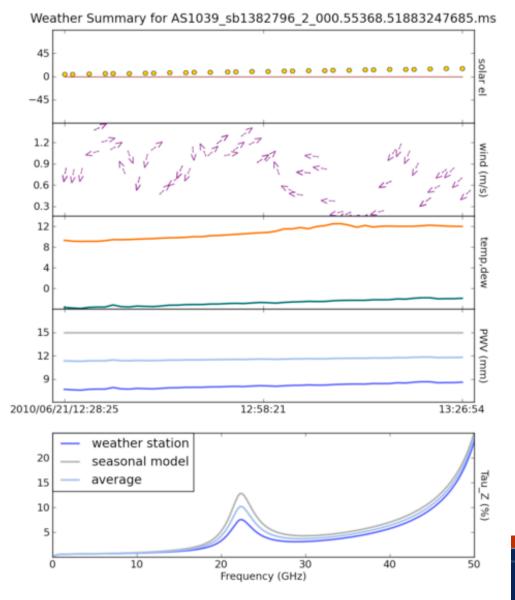


38

Image Viewer



- O X 💙 Viewer Display Panel Data Display Panel Tools View 💫 🛅 🅞 🔍 🔍 € 윕 Ŧ 凰 촱 R 씲 쏢 **Displaying cubes** 12000 beclination 40 00,000 04,000 04,000 00,000 12000 Declination 1499.78 km/s 1494.63 km/s **Movies Channel maps** ۲ 5656 15^h22^m36^a 15^h22^m36^a 00^a 21^m36^s 00^a 21^m36^s J2000 Right Ascension J2000 Right Ascension 12' 2000 Declination 12'J2000 Declination 1484.32 km/s 1489.48 km/s 08'04' 5°00' 56 56'15^h22^m36^a 00^a 21^m36^a 15^h22^m36^a 00^a 21^m36^a J2000 Right Ascension J2000 Right Ascension Velociti BX 21 46 Normal **Right Ascension** O Blink 10 Compact Rate /sec. Frame Step 🗶 ngc5921.demo.clean.image +0.00358195 Jy/beam Pixel: 81 119 0 22 15:22:47.684 +05.01.41.878 I 1494.63 km/s



Review calibration tables: *plotcal*

Anything - matplotlib

Buildmytasks

- Using Python, you can write your own scripts!
- Such scripts can be converted to tasks.
- If you wish, you can share them with the community (e.g., through NRAO).
- Contributed scripts are currently available at: <u>https://casaguides.nrao.edu/index.php/UST2</u>

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

