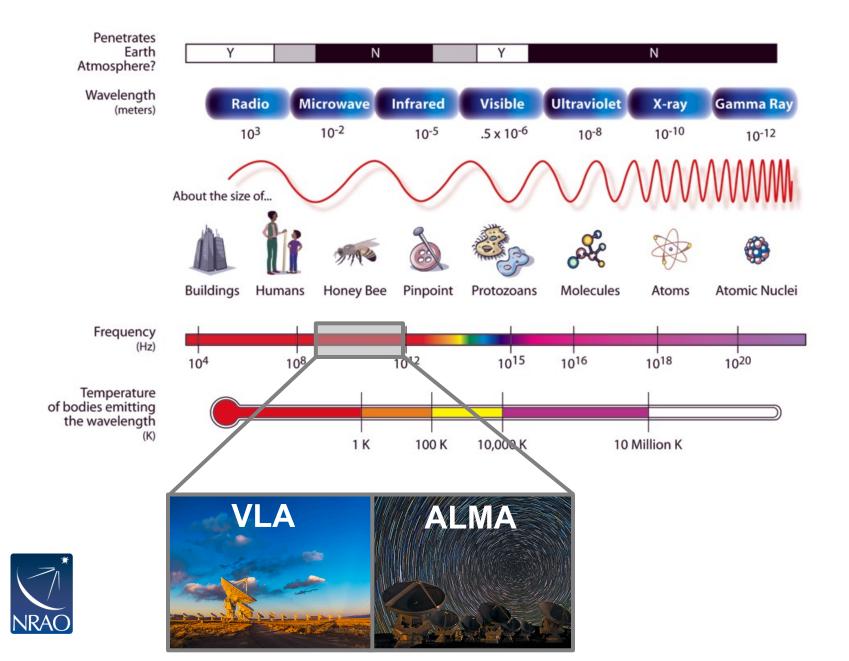
Introduction to ALMA


Kristina Nyland

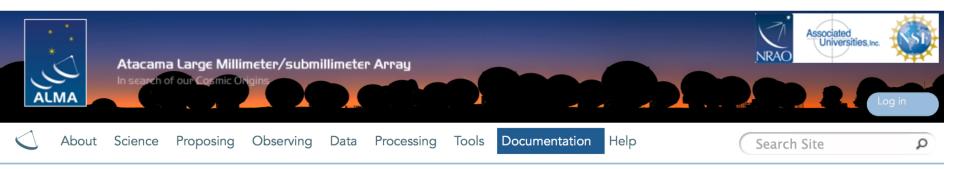
(NRC fellow, resident at NRL)

Associated Universities, Inc. Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Very Long Baseline Array

THE ELECTROMAGNETIC SPECTRUM

What is ALMA?

 Global partnership to provide unprecedented imaging & spectroscopic capabilities at mm/submm wavelengths


• ALMA is an array of 66 reconfigurable, high-precision antennas

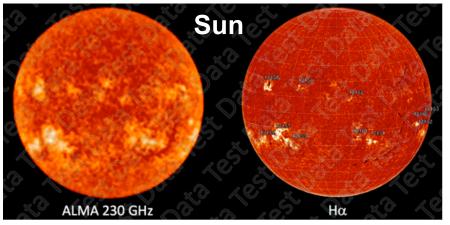
ALMA is a Telescope for all Astronomers

- ALMA is an open skies telescope anyone can propose for time!
- Support includes easy to use website + documention + pipeline data products + proposal and data reduction workshops
- You don't have to be a radio/mm astronomer to use ALMA data!

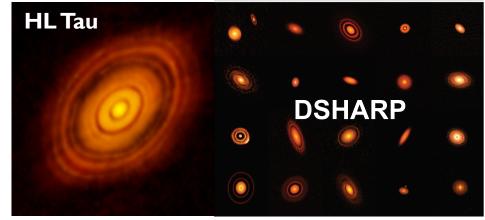
Documentation

Call for Proposals

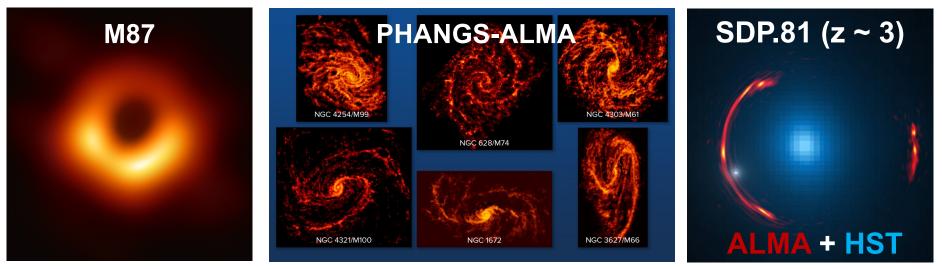
Documentation supporting the current ALMA Call for Proposals – **Cycle 6**. Documents from previous Cycles are provided here.


Document	Description
ALMA Proposer's Guide	Contains all pertinent information regarding the ALMA Call for Proposals
ALMA Technical Handbook	A comprehensive description of the ALMA observatory and its components
ALMA Users' Policies	The long-term core policies for use of the ALMA and ALMA data by the science community
Observing With ALMA - A Primer	Introduction to interferometry and how to use ALMA
ALMA Proposal Template	LaTeX format. Recommended but not mandatory
ALMA Proposal Review Process	The latest version of the ALMA Principles of the ALMA Proposal Review Process

	าts


- 1. Call for Proposals
- 2. Phase 1 & 2
- 3. Guides to the ALMA Regional Centers
- 4. ALMA Science Data Tracking, Data Processing and Pipeline, Archive and QA2 Data Products
- 5. ALMA Reports, Memos and Newsletters

Science with ALMA:


From the solar system to the high-redshift universe

Wedemeyer et al. 2016

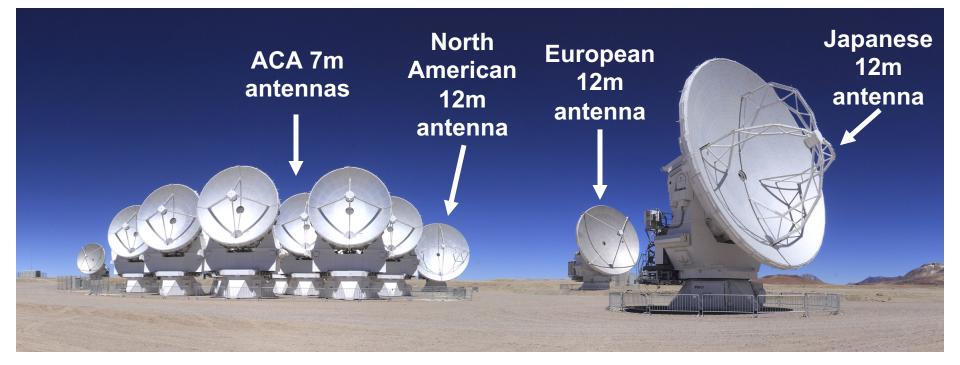
ALMA Partnership 2015; Andrews et al. 2018

EHT Collaboration 2019

Leroy et al. (in prep)

ALMA Partnership 2015; Hezaveh et al. 2016

The ALMA Site



ALMA Basics: Antennas

- Main 12m Array: 50 x 12m antennas
- Atacama Compact Array (ACA): 12 x 7m antennas
- Total Power (TP): 4 x 12m antennas
- **TP + ACA** (Morita Array)

Complementary!

Sensitive to emission on different spatial scales

ALMA Basics: Receiver Bands

Cycle 7 Receiver Bands				Mq	Most Compact			Most Extended		
Band	Frequency (GHz)	Wavelength (mm)	Primary Beam (FOV; ")	Continuum Sensitivity (mJy/ beam)	Angular Resolution (″)	Approx. Max. Scale (") (see P.24)	Spectral Sens. ∆T _{line} (K)	Angular Resolution (mas)	Approx. Max. Scale (") (see P.24)	Spectral Sens. ∆T _{line} (K)
3	84-116	3.6-2.6	73-53	0.088	4.0-2.9	34-25	0.16	50-36	0.59-0.43	1075
4	125-163	2.4-1.8	49-38	0.12	2.7-2.1	23-18	0.18	34-26	0.40-0.30	1104
5	158-211	1.9-1.4	37-29	0.12	2.1-1.6	18-13.5	0.15	26-20	0.30-0.24	962
6	211-275	1.4-1.1	29-22	0.12	1.6-1.2	14-10	0.14	20-15	0.24-0.18	947
7	275-373	1.1-0.8	22-16	0.22	1.23-0.91	10.4-7.6	0.2	15-11	0.18-0.13	1307
8	385-500	0.78-0.6	16-12	0.42	0.88-0.68	7.4-5.7	0.35	55-42	0.67-0.52	91
9	602-720	0.5-0.42	10-8.5	2.0	0.56-0.47	4.7-4.0	1.2	35-29	0.43-0.36	312
10	787-950	0.38-0.32	7.8-6.5	4.6	0.43-0.36	3.6-3.0	2.5	27-22	0.33-0.27	662

See the ALMA Cycle 7 Primer at: https://almascience.nrao.edu/documents-and-tools

ALMA Basics: Configurations

Start date	Configuration	Longest baseline	LST: Best conditions				
1-Oct-19	C-4	0.78 km	22-10				
20-Oct-19	C-3	0.50 km	23-11				
10-Nov-19	C-2	0.31 km	1-13				
30-Nov-19	C-1	0.16 km	2-14				
20-Dec-19	C-2	0.31 km	4-15				
10-Jan-20	C-3	0.50 km	5-17				
1-Feb-20	No observations due to maintenance						
1-Mar-20	C-4	0.78 km	8-21				
20-Mar-20	C-5	1.4 km	9-23				
20-Apr-20	C-6	2.5 km	11-1				
20-May-20	C-7	3.6 km	13-3				
20-Jun-20	C-8	8.5 km	15-5				
11-Jul-20	C-9	13.9 km	16-6				
30-Jul-20	C-10	16.2 km	17-7				
20-Aug-20	C-9	13.9 km	19-8				
10-Sep-20	C-8	8.5 km	20-9				

10 configs with baselines between 150 m and 16.2 km; 192 possible antenna locations

ALMA Basics: Resolution

Config	Lmax		Band 3	Band 4	Band 5	Band 6	Band 7	Band 8	Band 9	Band 10
	Lmin		100 GHz	150 GHz	183 GHz	230 GHz	345 GHz	460 GHz	650 GHz	870 GHz
7-m	45 m	AR	12.5″	8.4"	6.8″	5.4"	3.6"	2.7"	1.9"	1.4"
Array	9 m	MRS	66.7"	44.5″	36.1″	29.0"	19.3″	14.5″	10.3"	7.7"
C43-1	161 m	161 m AR		2.3″	1.8″	1.5″	1.5" 1.0"	0.74″	0.52"	0.39"
	15 m	MRS	28.5″	19.0″	15.4″	12.4″	8.3″	6.2″	4.4"	3.3″
C43-2	314 m	AR	2.3″	1.5″	1.2″	1.0″	0.67"	0.50″	0.35″	0.26"
	15 m	MRS	22.6″	15.0″	12.2″	9.8″	6.5″	4.9″	3.5″	2.6″
C43-3	500 m	AR	1.4"	0.94″	0.77″	0.62″	0.41"	0.31″	0.22"	0.16"
	15 m	MRS	16.2″	10.8″	8.7″	7.0″	4.7"	3.5″	2.5″	1.9"
C43-4	784 m	AR	0.92″	0.61″	0.50″	0.40″	0.27″	0.20″	0.14"	0.11″
	15 m	MRS	11.2″	7.5″	6.1″	4.9″	3.3″	2.4″	1.7"	1.3″
C43-5	1.4 km	AR	0.54″	0.36″	0.30″	0.24″	0.16″	0.12″	0.084"	0.063"
	15 m	MRS	6.7″	4.5″	3.6″	2.9″	1.9″	1.5″	1.0"	0.77″
C43-6	2.5 km	AR	0.31″	0.20″	0.16″	0.13″	0.089"	0.067″	0.047"	0.035″
	15 m	MRS	4.1″	2.7″	2.2″	1.8″	1.2″	0.89″	0.63″	0.47"
C43-7	3.6 km	AR	0.21″	0.14″	0.11″	0.092″	0.061"	0.046″	0.033"	0.024"
	64 m	MRS	2.6″	1.7″	1.4″	1.1″	0.75″	0.56″	0.40"	0.30"
C43-8	8.5 km	AR	0.096″	0.064″	0.052″	0.042″	0.028″	N/A	N/A	N/A
	110 m	MRS	1.4"	0.95″	0.77"	0.62″	0.41″			
C43-9	13.9 km	AR	0.057″	0.038″	0.031″	0.025″	0.017″	N/A	N/A	N/A
	368 m	MRS	0.81″	0.54″	0.44"	0.35″	0.24″			
C43-10	16.2 km	AR	0.042″	0.028″	0.023″	0.018″	0.012″	N/A	N/A	N/A
	244 m	MRS	0.50″	0.33″	0.27"	0.22″	0.14"			

Configuration details from Table A-1 of the ALMA Cycle 7 Proposer's Guide

ALMA in a Nutshell

- Angular resolution down to 0.015" (at 300 GHz)
- **Frequency range** of 84-950 GHz (3 mm-320 μm)
- Wide-band receivers* (8 GHz bandwidth)
- Flexible correlator capable of tunings with wide bandwidths + high spectral resolution
- Full polarization capabilities (linear + circular).
- **Pipeline** processing + extensive **observer support**

ALMA is 10-100X more sensitive and has 10-100X better angular resolution compared to previous mm arrays

> *16 GHz instantaneous bandwidth for 90 degree Walsh Switching in Bands 9 and 10 (TDM mode only)

ALMA Status: Steady State Operations

- Construction Project ended in September 2014
- Science observing with >16 km baselines (C43-10) commissioned in 2014/2015
- All 66 antennas operational
 - Minimum of 43 x 12m-array antennas for Cycle 7 obs
- Commissioning still in progress for some modes (e.g., widefield polarimetry)

New Cycle 7 ALMA Capabilities

- Spectral scans are 25% more efficient and are now offered as standard modes!
- Data rate limitations significantly relaxed long baseline + high spectral resolution modes possible (less high-data-reate warnings in OT)
- Band 7 at longest baselines* (16.2 km)
- Solar observations in Band 7 in compact configs
- Improved sensitivity for full spectral resolution linear polarization (on-axis only)

Nonstandard modes

*Non-standard mode if no suitable calibrator found within 5 deg

Full ALMA Capabilities (Cycle 7 Plus:)

Receiver bands:

• Inclusion of Bands 1 (35-50 GHz) and 2 (65-90 GHz)

Baselines:

• Observations in all bands out to 16 km

Non-Standard modes:

Decrease in fraction of non-standard modes to ~10%

Observing Time:

• Up to 4500 hrs for successful PI programs on the 12m array

Observing Modes:

• Widefield (including mosaics) polarimetry (12m + 7m arrays)

Key Observing Considerations

Source location - coordinates, velocities, redshift, proper motions, ephemerides Spatial scales of interest - angular resolution and largest angular scale **Correlator set-up** - frequency, bandwidth, and spectral resolution **Mapping area** - if >1/3 the size of the primary beam, mosaicking may be necessary

- **Sensitivity** consider impact of source extent, expected line widths, etc.
- **Calibration and overheads** overheads may be high – check ALMA OT early

Dec. limit for ALMA is +47° (20° max elevation)

Consider impact of shadowing in compact configs for declinations <-65° or >+20°

Cycle 7 Supplemental Call for the ACA

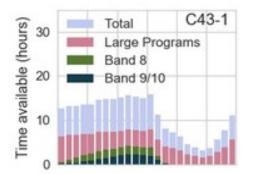
- 750 hrs of ACA (7m array or 7m + TP) observing time
- Observations between January 2020 and September 2020
- Proposal deadline is October 1, 2019
- Standard observing modes only
- Proposals submitted to the supplemental call will be peer reviewed through a distributed system

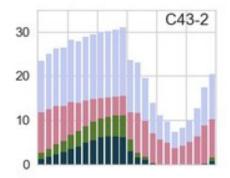
https://almascience.nrao.edu/proposing/7m-arraysupplemental-call

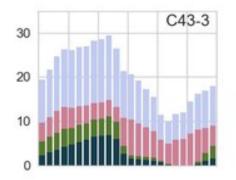
Cycle 7 Supplemental Timeline

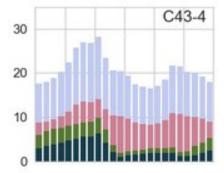
Date	Milestone				
03 September 2019	Call for Proposals and Supplemental Call submission server opened				
01 October 2019	Deadline to submit Supplemental Call proposals				
15 October 2019	Proposals released to reviewers				
22 October 2019	Deadline for reviewer to report conflicts of interest on proposal review assignments				
12 November 2019	Deadline to submit reviews and ranks				
Early December 2020	Notification emails sent to PIs				
January 2020	Successful Supplemental Call proposals enter the observing queue				

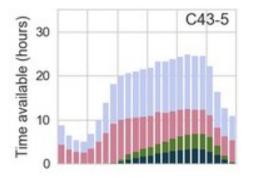
750 hrs of additional ACA time (standard modes)

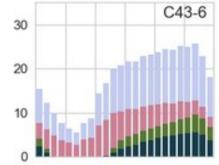

NAASC Sources of Support

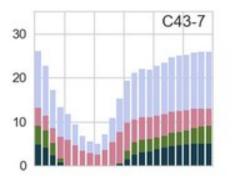

- ALMA Helpdesk: User support is a priority so questions are usually answered within 48 hours (with around the clock staffing in the week leading up to the proposal deadline) - https://help.almascience.org
- Student Observing Support: Successful ALMA proposals will be invited to apply for up to \$35k to support undergraduate or graduate student involvement - https://science.nrao.edu/opportunities/studentprograms/sos
- Page Charges: Upon request NRAO covers page charges for authors at US institutions when reporting results from ALMA/VLA https://library.nrao.edu/pubsup.shtml
- Face-to-face Visitor Support: NRAO will cover the travel expenses of up to 2 people from 2 teams per week to come to the NAASC to get support for data reduction, proposal preparation, etc... We also have long term visitor support as well - https://science.nrao.edu/facilities/alma/visitorsshortterm

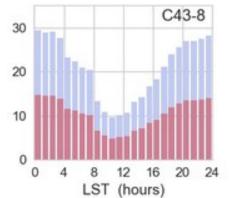


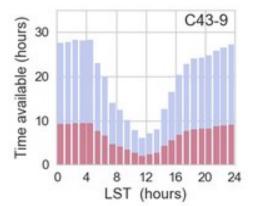

www.nrao.edu science.nrao.edu

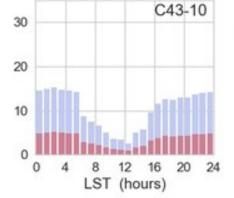

ALMA Observing Time by LST

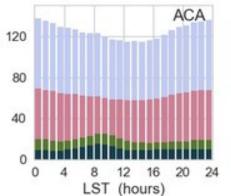


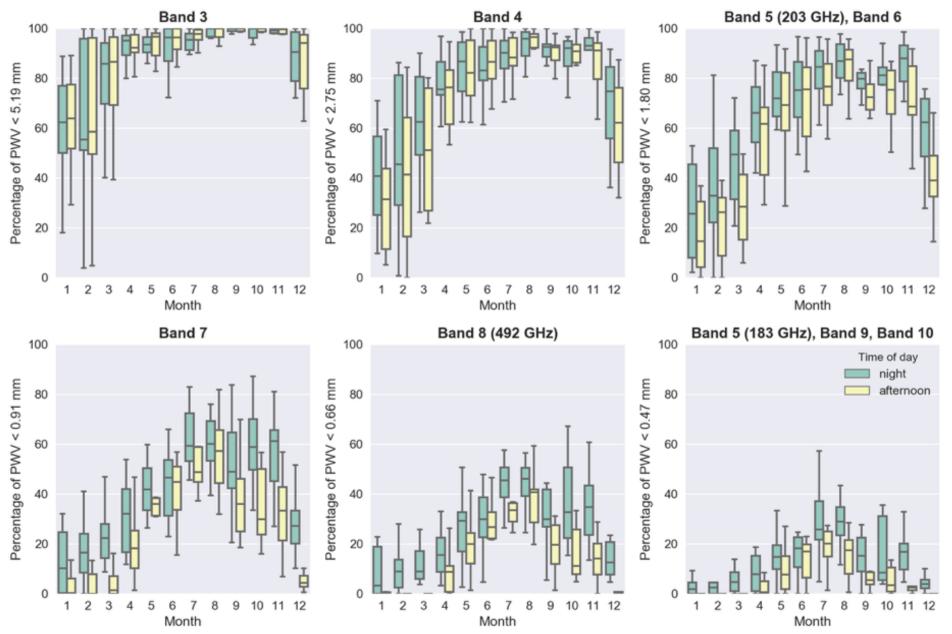


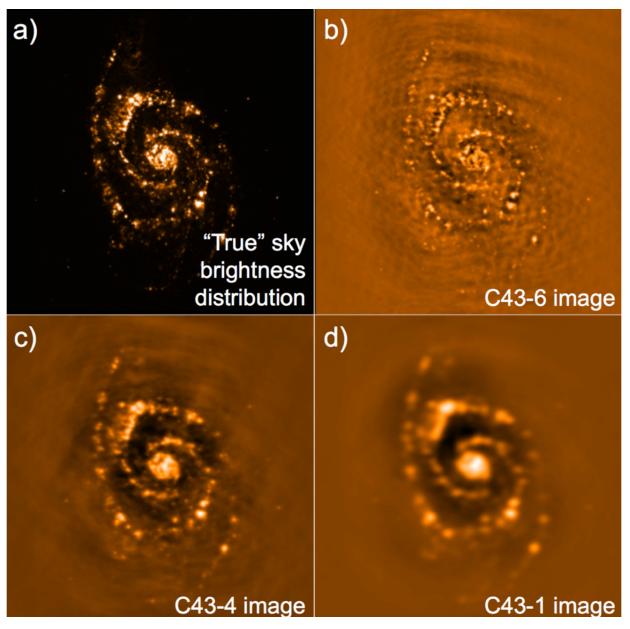










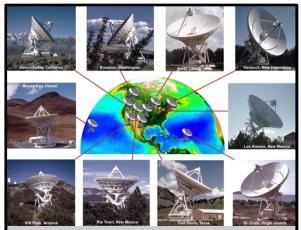

ALMA Weather Constraints

Configurations

	Band	3	4	5	6	7	8	9	10
	Frequency (GHz)	100	150	185	230	345	460	650	870
Configuration									
7-m	θ_{res} (arcsec)	12.5	8.35	6.77	5.45	3.63	2.72	1.93	1.44
	θ_{MRS} (arcsec)	66.7	44.5	36.1	29.0	19.3	14.5	10.3	7.67
C43-1	θ_{res} (arcsec)	3.38	2.25	1.83	1.47	0.98	0.735	0.52	0.389
	θ_{MRS} (arcsec)	28.5	19.0	15.4	12.4	8.25	6.19	4.38	3.27
C43-2	θ_{res} (arcsec)	2.3	1.53	1.24	0.999	0.666	0.499	0.353	0.264
	θ_{MRS} (arcsec)	22.6	15.0	12.2	9.81	6.54	4.9	3.47	2.59
C43-3	θ_{res} (arcsec)	1.42	0.943	0.765	0.615	0.41	0.308	0.218	0.163
	θ_{MRS} (arcsec)	16.2	10.8	8.73	7.02	4.68	3.51	2.48	1.86
C43-4	θ_{res} (arcsec)	0.918	0.612	0.496	0.399	0.266	0.2	0.141	0.106
	θ_{MRS} (arcsec)	11.2	7.5	6.08	4.89	3.26	2.44	1.73	1.29
C43-5	θ_{res} (arcsec)	0.545	0.363	0.295	0.237	0.158	0.118	0.0838	0.0626
	θ_{MRS} (arcsec)	6.7	4.47	3.62	2.91	1.94	1.46	1.03	0.77
C43-6	θ_{res} (arcsec)	0.306	0.204	0.165	0.133	0.0887	0.0665	0.0471	0.0352
	θ_{MRS} (arcsec)	4.11	2.74	2.22	1.78	1.19	0.892	0.632	0.472
C43-7	θ_{res} (arcsec)	0.211	0.141	0.114	0.0917	0.0612	0.0459	0.0325	0.0243
	θ_{MRS} (arcsec)	2.58	1.72	1.4	1.12	0.749	0.562	0.398	0.297
C43-8	θ_{res} (arcsec)	0.096	0.064	0.0519	0.0417	0.0278	-	-	-
	θ_{MRS} (arcsec)	1.42	0.947	0.768	0.618	0.412	-	-	-
C43-9	θ_{res} (arcsec)	0.057	0.038	0.0308	0.0248	-	-	-	-
	θ_{MRS} (arcsec)	0.814	0.543	0.44	0.354	-	-	-	-
C43-10	θ_{res} (arcsec)	0.042	0.028	0.0227	0.0183	-	-	-	-
	θ_{MRS} (arcsec)	0.496	0.331	0.268	0.216	-	-	-	-

Spatial Filtering

NRAO Observatories: Comparison


ALMA (Chile)

Atacama Large mm/submm Array Antennas: 66 total $(54 \times 12m + 12 \times 7m)$ Freq: 84 – 950 GHz Lambda: 0.3 - 3 mmtheta: 0.02 - 3.5" (10 configurations)

VLA (NM, USA)

Karl G. Jansky Very Large Array Antennas: $27 \times 25m$ Freq: 1 – 50 GHz (plus 2 bands < 1 GHz) Lambda: 6 – 300 mm theta: 0.05 - 45" (A, B, C, D configs)

VLBA (USA)

Very Long Baseline Array

Antennas: $10 \times 25m$ (now fiber connected!) Freq: 0.33 - 85 GHzLambda: 0.3 - 90 cmtheta: 0.12 - 22 mas($B_{\text{max}} = 8611 \text{ km}$) 24

NRAO Observatories

One observatory, three world-class facilities (science.nrao.edu)

Affiliated observatories include Green Bank Observatory

(greenbankobservatory.org)

ALMA Antennas, Bands & Configs

Number of antennas

- At least forty-three (43) antennas in the 12-m Array
- At least 10 7m antennas (for short baselines) and 3 12m antennas (for making single-dish maps) in the ACA

Receiver bands

- Receiver Bands 3, 4, 5, 6, 7, 8, 9, and 10
- Wavelengths of 3.1, 2.1, 1.6, 1.3, 0.87, 0.74, 0.44, and 0.32 mm

12-m Array Configurations

- Max baselines between 0.15 km and 16 km
- Max baselines of 3.6 km for Bands 8, 9 and 10
- Max baselines of 16 km for Bands 3, 4, 5, 6 and 7

See the ALMA Proposer's Guide at:

(https://almascience.nrao.edu/documents-and-tools)

Standard vs. non-Standard Modes

Cycle 7 will allocate ~20% of the total time to non-standard modes (with 10% of available for testing new capabilities

Non-Standard Observing Modes include:

- Band 7 observations with baselines >5 km & phase calibrator
 >5 degrees from the science target
- Bands 9 and 10 observations
- Bandwidth switching projects
- Solar observations
- All polarization observations
- VLBI observations
- Non-standard calibration strategy (e.g., user-defined calibrators in the OT)
- Astrometric Observations

ALMA Polarimetry

- All polarimetric observations are non-standard in Cycle 7
- Single pointing, on axis, full (including circular) polarization for both continuum and full-spectral-resolution observations in Band 3, 4, 5, 6, and 7 are offered on the 12m Array.
- Improved sensitivity for linear polarization for full spectral resolution
- The minimum detectable degree of circular polarization, defined as three times the systematic calibration uncertainty, is currently 1.8% of the peak flux for both TDM and FDM observations.
- Circular polarization will be offered only for sources that are on-axis with an angular size less than 10% of the FWHM primary beam.