

Karl G. Jansky Very Large Array (VLA) Anna D. Kapińska (NRAO)

VLA interferometer

Located in New Mexico, on the San Agustin Plains, at 6970 ft (2120m) altitude.

- \rightarrow 28 antennas: 27 observing at any time, 1 for maintenance
- \rightarrow arranged in Y-shape
- \rightarrow each antenna of 25m diameter
- → 4 configurations allowing for range of angular resolutions
- \rightarrow observing north of -40°

Originally constructed in 1973-1980, upgraded in 2003-2012

Angular resolution

Depends on frequency (0.074-45 GHz) and VLA configuration

Configurations: A (largest) \leftarrow B \leftarrow C \leftarrow D (smallest)

Configuration	А	В	С	D	7	
B _{max} (km ¹)	36.4	11.1	3.4	1.03		
B _{min} (km ¹)	0.68	0.21	0.035 ⁵	0.035		
Band	Synthesized Beamwidth 9 _{HPBW} (arcsec) ^{1,2,3}					
74 MHz (4)	24	80	260	850 14 a	rcmin	
350 MHz (P)	5.6	18.5	60	200		
1.5 GHz (L)	1.3	4.3	14	46		
3.0 GHz (S)	0.65	2.1	7.0	23		
6.0 GHz (C)	0.33	1.0	3.5	12		
10 GHz (X)	0.20	0.60	2.1	7.2		
15 GHz (Ku)	0.13	0.42	1.4	4.6		
22 GHz (K)	0.089	0.28	0.95	3.1		
33 GHz (Ka)	0.059	0.19	0.63	2.1		
45 GHz (Q) 43 m	0.043	0.14	0.47	1.5		

Angular resolution

Depends on frequency (0.074-45 GHz) and VLA configuration

Configurations: A (largest) \leftarrow B \leftarrow C \leftarrow D (smallest)

Reconfiguration:

approx. every 4 months

Call for proposals:

2x year – 1st Feb & 1st Aug

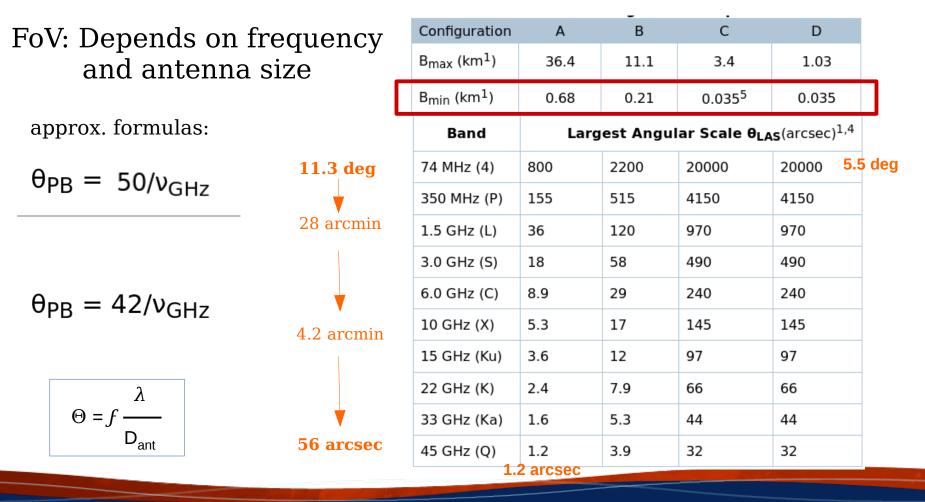
Next proposal deadline in August for **C** and **B** configurations (2020A)

Configuration	А	В	C	D		
B _{max} (km ¹)	36.4	11.1	3.4	1.03		
B _{min} (km ¹)	0.68	0.21	0.035 ⁵	0.035		
Band	Synthesized Beamwidth $\theta_{HPBW}(arcsec)^{1,2,3}$					
74 MHz (4)	24	80	260	850		
350 MHz (P)	5.6	18.5	60	200		
1.5 GHz (L)	1.3	4.3	14	46		
3.0 GHz (S)	0.65	2.1	7.0	23		
6.0 GHz (C)	0.33	1.0	3.5	12		
10 GHz (X)	0.20	0.60	2.1	7.2		
15 GHz (Ku)	0.13	0.42	1.4	4.6		
22 GHz (K)	0.089	0.28	0.95	3.1		
33 GHz (Ka)	0.059	0.19	0.63	2.1		
45 GHz (Q)	0.043	0.14	0.47	1.5		

Largest angular scale (LAS) & Field of View (FoV)

LAS: Depends on frequency and VLA configuration

LAS is the largest angular scale the interferometer is sensitive to. Source features more extended than that will be *"resolved out"*.


FoV: Depends on frequency and individual antenna size

This will be more than LAS, FoV is the amount of sky the antennas "see" with a single pointing (\rightarrow primary beam)

Largest angular scale (LAS) & Field of View (FoV)

LAS: Depends on frequency and VLA configuration

Frequency specifications

Ten frequency bands from 50 MHz to 50 GHz

- 8 cryogenic bands, with Cassegrain subreflector, covering 1–50 GHz (L to Q bands)
- 2 uncooled, prime-focus bands, covering 50–450 MHz (4 and P bands)

VlA can observe up to 8 GHz instantaneous bandwidth (wide-band)

- Two set of samplers: 8-bit ($\Delta \nu$ =2 GHz) and 3-bit ($\Delta \nu$ =8 GHz)
- & in full polarisation (circular and linear depending on band).

Observing modes

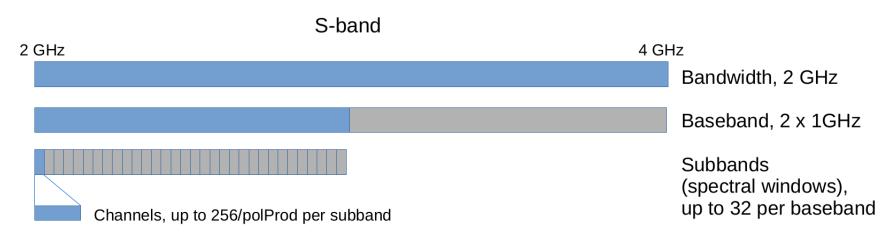
- Continuum (Stokes I)
- Polarimetry (Stokes Q,U,V)
- Spectral lines
- Sub-arrays [each sub-array can perform completely independent observing program simultaneously]
- Mosaicking [multiple pointings and phase centres]
- On-the-fly mapping (OTF) ["scanning mode"]
- Solar system objects
- Using VLA as a VLBI station
- Pulsar observing

WIDAR Correlator

WIDAR=Wideband Interferometric Digital ARchitecture

The correlator's basic features (not all implemented yet):

- 64 independent full-polarization subbands. Each can be tuned to its own frequency, with own bandwidth (128 MHz to 31.25 kHz) and spectral resolution (from 2 MHz to 0.5 kHz)
- 100 msec dump times with up to 16,384 channels and full polarization (faster if spectral resolution, bandwidth, or number of antennas is decreased)
- **Up to 8 sub-arrays**. Maximum implemented to date is 3.
- Phased array capability with full bandwidth (pulsar and VLBI)
- Special pulsar modes: 2 banks of 1000 time bins, and 200 µsec time resolution (all spectral channels), or 15 µsec (64 channels/spw).


General Observing (GO)

Standard observing set ups available to anyone:

- up to 8GHz bandwidth (depending on band)
- 3-bit and 8-bit modes, can use combination of these
- up to 3 sub-arrays in 8-bit mode
- spectral set-up:
 - 1 or 2 GHz basebands (can have independent set-ups)
 - 1 baseband can be made of up to 32 independently tunable subbands
 - subband (spectral window) widths: max 128 MHz, min 31.25 kHz
 - single Baseline Board Pair (BIBP; one per subband is default)
 can handle 256 spectral points divided over polarisation products, i.e.:
 - 256 spectral channels in single polarisation
 - 128 spectral channels in dual
 - 64 spectral channels in full

General Observing (GO) - cont.

This gives up to 16,384 spectral channels.

If more is needed, there are options: (1) recirculation, (2) baseline board stacking, or using (1) and (2) simultaneously

<u>Observing modes in GO</u>: continuum, polarisation, spectroscopy, solar observing, OTF mosaicking (P,L,S,C bands), P band continuum and spectrocopy, 3 simultaneous subarrays, mix of 3-bit and 8-bit modes

Shared Risk Observing (SRO)

Allows access to extra capabilities that have not been as well tested as GO capabilities.

As of present these are:

- OTF in bands between X to Q
- Phased array mode for pulsar observing (YUPPI)
- P band polarimetry

Resident Shared Risk Observing (RSRO)

Access to even more extended capabilities that are currently being tested and commissioned

- In exchange for period of residency at NRAO to help the testing

As of present these are:

- Correlator dump times <50msec (incl. 5msec for transients)
- Data rates >60 MB/s
- Recirculation beyond factor of 64
- 4 band (58-84 MHz)
- More than 3 sub-arrays in 8-bit sampling mode
- Subarrays in 3-bit sampling mode

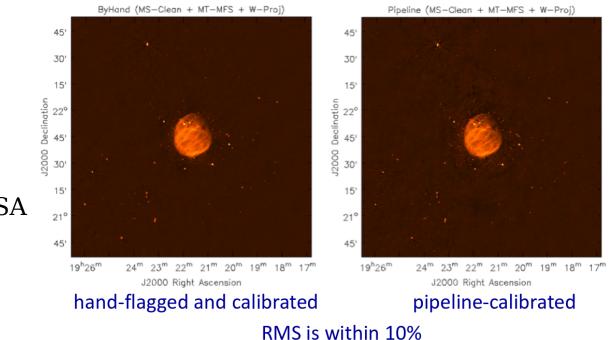
Post observations: software

NRAO data reduction software, CASA

- Designed to handle wide-band upgraded-VLA
 and ALMA data
- Based on C++ reduction tools, with iPython interface for easy data manipulation
- Latest version: v5.4.1

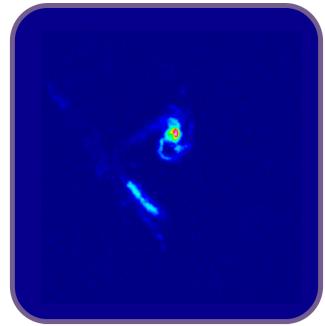
We will learn basic CASA during these Community Days.

Developed by international consortium composed of:


https://casa.nrao.edu/

VLA calibration pipeline

- Currently designed for continuum (Stokes I)
- Work in progress to support polarimetry and spectral lines, and improve RFI flagging
- Calibration only (imaging not supported yet)



• Latest version of CASA including pipeline: v5.4.1

Future: Science Ready Data Products (SRDP)

Science-Ready Data Products:

- Provide calibrated and imaged PI observations
- Provide expertise required for radio data
 processing, so users may focus on their science
- Make radio astronomy accessible to broader astronomy community
- Curate a rich collection of images and cubes for archival study
- Ultimately for all NRAO's instruments

• Now underway, the SRDP project will begin to deliver increasing levels of products and services over the next five years.

Useful Links

- NRAO Help Desk: go.nrao.edu/obshelp
- VLA Observational Status Summary: go.nrao.edu/vla-oss
- VLA Exposure Calculator: go.nrao.edu/ect
- Proposal Submission Tool: <u>my.nrao.edu</u>
- CASA-data reduction software: casa.nrao.edu/
- VLA Calibration Pipeline: go.nrao.edu/vla-pipe

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities,

Inc.

