Towards Resolving Terrestrial-Scale Planet Formation

Jane Huang

CENTER FOR

ASTROPHYSICS

HARVARD & SMITHSONIAN

"The Scientific Quest for High Angular Resolution"

NRAO Special Session

235th AAS Meeting Honolulu, HI January 7, 2020

Looking for reminders of home

WORLDWIDE TELESCOPE

AMERICAN ASTRONOMICAL SOCIETY

Very massive protoplanets can be studied via direct imaging

Image Credit: ESO/A. Müller et al.

Keppler+ 2018

Planets too faint to be imaged can still create large disturbances in disks

Credit: P. Armitage

http://jila.colorado.edu/~pja/planet_migration.html

Disk is smooth initially

Perturbation by a planet triggers a spiral density wave

As the planet grows, the spiral density wave shocks and opens a gap

In low-viscosity disks, a single planet may open multiple gaps (e.g., Duffell & MacFayden 2013, Zhu+ 2014, Dong+ 2017, Bae+2017)

ALL PROTOPLANETARY TALKS ...

Illustration credit: Melissa Hoffman (NRAO)

ALMA Partnership 2015

A gap at 1 au in the TW Hya disk

Andrews+ 2016

The Disk Substructures at High Angular Resolution Project (DSHARP)

Andrews, Huang+ 2018 (DSHARP I)

Most disk gaps detected so far with ALMA seem to be consistent with giant planet formation at tens of au

Zhang+ 2018 (DSHARP VII)

Disk observations: ALMA vs. VLA

The case for a next-generation VLA

- Coverage of key frequencies where **dust is optically thin** but still the dominant source of emission (~30-100 GHz)
- Spatial resolution < 1 au to resolve substructures in the inner disk at distance of nearby star-forming regions (~160 pc)
- **10x improvement in sensitivity** to detect substructures carved by planets smaller than Solar System ice giants

Tracing the formation of Super-Earths

Ricci+ 2018

Gaps induced by super-Earths are predicted to be detectable in low-viscosity disks ($\alpha = 10^{-5}$) with 20 h onsource with the ngVLA

Tracing the formation of Earths?

Harter+ 2019

Gaps induced by Earths are predicted to be detectable in low-viscosity disks (α =10⁻⁵) with 100 h on-source with the ngVLA

Summary

- ALMA is well-suited for characterizing the giant planet formation zone in disks
- The ngVLA is necessary to access the appropriate frequencies, spatial resolution, and sensitivity to study the terrestrial planet formation zone
- Selection of high-priority ngVLA targets will rely on present efforts to constrain dust grain sizes, disk turbulence, and pressure scale heights with facilities such as ALMA and the VLA

Image credit: NRAO