

The Very Long Baseline Array Jay Blanchard

Credit

- Large parts of this talk were written by:
- Amy Mioduszewski
- Emmanuel Momjian
- Walter Brisken
- Many others!

Instrument Overview

- A 10 element interferometer radio telescope
 - Identical 25m diameter antennas
 - Array dedicated to Very Long
 Baseline Interferometry (VLBI)
- Antenna sites in US territory from Mauna Kea Hawaii to St. Croix, US Virgin Islands
 - Baseline lengths between 236
 km and 8611 km
- Software Correlator (DiFX) in Socorro, NM

Instrument Overview II

Frequency coverage from 330 MHz (90 cm) to 90 GHz (3mm)

- In 10 frequency bands
- Current standard bandwidth 512 MHz (dual polarization)
 - Except for narrow-band receiver
- Wide instantaneous spanned bandwidth:
 - S/X mode: simultaneous
 2.4 GHz and 8.4 GHz
 observing
 - C-band receiver: simultaneous tunings (almost) anywhere in 4-8 GHz band

λ(cm)		v(GHz)	σ(μJy/beam) in 8 hrs at 2Gbps
90 cm	[P]	0.312 - 0.342	266*
50 cm	[UHF]	0.596 - 0.626	681*
21 cm	[L]	1.35 - 1.75	10-12
13 cm	[S]	2.15 - 2.35	12
6 cm	[C]	3.9 - 7.9	6-9
4 cm	[X]	8.0 - 8.8	11-15
2 cm	[Ku]	12.0 - 15.4	18
1 cm	[K]	21.7 - 24.1	18-22
7 mm	[Q]	41.0 - 45.0	40
3 mm	[W]	80.0 - 90.0	180 †

Instrument Overview III

- The RDBE (<u>R</u>OACH <u>Digital Back End</u>) has two personalities: the PFB and the DDC
- The PFB (Polyphase Filter Bank) has
 - 8 X 32MHz dual pol channels (or subbands in VLA terminology, or IF in AIPS terminology), or 16 X 32 MHz single polarization.
 - these result in 2Gbps recording.
 - generally recommended for continuum observations where RFI is a major concern.
- The DDC (Digital DownConverter) is, assuming dual pol
 - either 2 or 4 data channels (subbands) range downward from 128MHz to IMHz in binary steps.
 - current maximum of 512MHz dual pol (4Gbps)
 - recommended for spectral line observations and continuum observations that require high sensitivity or non-continuous subbands.

VLBA Limitations

• Limited to high brightness temperature targets

$$- T_B = \frac{S_v \lambda^2}{2\pi k_B \Omega}$$

- S_{ν} = flux density, λ = observing wavelength, Ω = solid angle of target

- Diffuse objects get "resolved out"
- Small field of view
 - Bandwidth smearing and time smearing restrict the usable field of view to a tiny portion of the primary beam around the phase center
- Long wait time for data
 - Observations are recorded on physical drives that have to be shipped to New Mexico for correlation
- Limited frequency coverage

Science applications of VLBA and VLBI

- VLBI provides a tool to study mas-level structure in radio sources.
 - Active Galactic Nuclei (AGN)
 - Pulsars
 - Masers
 - Supernova/Supernova Remnants
 - Magnetically active stars
 - X-ray binaries
 - Novae

- AVLBI detection instantly identifies a compact non-thermal source
 - Synchrotron/cyclotron radiation (electrons in a magnetic field)
 - Maser emission (stimulated emission)
 - Thermal lines seen in absorption against non-thermal background

Special correlator capabilities (DiFX)

- Pulsar gate
 - Synchronous correlator gate to improve signal to noise ratio of repeating signals, such as pulsars
- Multi-phase-center capability
 - Can simultaneously correlate at 100s of points in the antenna primary beam
 - Especially effective w/VLBA due to identical antennas
- Ultra-high spectral resolution
 - Using "zoom" modes, can achieve 1 Hz
 - Up to I 32096 channels if justified.
 - Used in some asteroid radar observing

(Resident) Shared Risk Observing (R)SRO

Some possible SRO projects:

• Baseband Data Copy

Some possible RSRSO projects:

- Rapid response capability
- Improved troposphere model
- 3mm VLBI with the LMT
- Multi tone pulsecal
- Y3 Observing with the VLBA
- L/P Dual-Band Observations

No longer shared risk since 2021A:

- 4 Gbps observing (512 MHz bandwidth)
- VLA (YI) single dish VLBI is now GO!

High dynamic range imaging at milliarcsecond resolution

- Locations of 10 antennas carefully chosen for optimal "UV coverage"
- Imaging resolution in different observing bands:
 - L-band (~1.6 GHz / 20 cm): 5 mas
 - X-band (~8 GHz / 4 cm): 0.85 mas
 - Q-band (~50 GHz / 7mm): 0.17 mas
- E.g. for ~I mas resolution
 - IAU at I Kpc
 - Few-10 stellar radii at 100pc

Example: WR140, imaging the evolution of the colliding wind region in Wolf-Rayet + O binary star system. Separation between stars between ~5-15 mas or 9-27 AU (Dougherty et al. 2010).

High dynamic range imaging at milliarcsecond resolution

- M87 Jet at 43 GHz (R.C.Walker)
- Challenging: structure changes over time, high contrast

Time-dependent phenomena

- VLBA available 24 hours per day, all year
- Can probe phenomena ranging from hours to years in duration
- VLBI sources tend to be variable in brightness, structure, and polarization
- Perfect instrument for wide range of science within graduate student's thesis timescale!

Example: Daily observations of Xray binary SS433 over 40 days. (Mioduszewski et al)

High precision relative astrometry

- Astrometry of a target object relative to a background quasar
 - Usually tied to ICRF to 0.25 mas
- Routinely repeatable at 0.1 mas precision
- Best astrometry to date better than 0.01 mas
- Can be performed on continuum or spectral line sources
 - E.g., pulsars, stars, masers

14

High precision relative astrometry

• BeSSeL project measures distances to star forming regions through methanol masers (Reid et al.), determining the structure of the spiral arms of the Galaxy.

BeSSeL Survey Result:

Milky Way has as much mass as Andromeda

- Astrometric observations with the VLBA of stars in spiral arms reveal that the Milky Way's rotation curve is very similar to Andromeda's
- This indicates that the dark matter haloes of the two galaxies are comparable in mass.

"In your face, Andromeda! Bang! Make that, Big Bang!"

-- The Colbert Report January, 2009

Planet Hunting

It's not just for optical telescopes

- Saturn-sized planet found orbiting a <0.1 M_{Sun} dwarf star
- Curiel et al. (2020) used the astrometric method to detect the "wobble" of the small, cool star TVLM 513-46546

Extended arrays

- VLBA uses data formats and setups compatible with other VLBI antennas
- Routinely involved in High Sensitivity Array (HSA), phased VLA, Green Bank Telescope and Effelsberg
 - Increases sensitivity by an order of magnitude
- Participates with European VLBI Network in the "Global VLBI Array"
- Joins the Global mm VLBI Array (GMVA) for 86-90 GHz (3mm) observations twice per year. Now with ALMA!
- Participates in global array of geodetic antennas for reference frame measurements.

Example: SN1993J imaged over 10 years with VLBA+DSN+EVN (Bietenholz etal.)

VLBA + HSA: GW170817

HSA observations reveal superluminal motion in GRB jet

- VLBA + Green Bank + VLA
- Observations of the GRB associated with GW170817 double neutron star merger
- Images show jet velocity of ~4.1c
- Viewing angle of jet is constrained to 14° – 28° from line of site

From Mooley et al. 2018

VLBA + HSA: GW170817

HSA observations reveal superluminal motion in GRB jet

- VLBI observations proved the GRB had a successful jet
- Proved that off-axis GRBs can be detected
- Helped constrain the models for the GRB
- Provided estimates for how many short GRBs we miss due to orientation/beaming effects
 - For every event like GW170817 that we detect, there are ~1,000 we miss

www.nrao.edu

The VLBA is part of NRAO - a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

