Polarization Calibration

Frank Schinzel (NRAO)

Polarized Radio Emission - Why do we care?

Synchrotron Emission

Zeeman Splitting $\overrightarrow{\mathbf{B}} \overrightarrow{\mu_{\mathrm{s}}}$
$\otimes \otimes$ Right circular Linear

- Left circular

Haverkorn, Katgert, \& de Bruyn 2003

Polarized Radio Emission - Why do we care?

Synchrotron Emission

Haverkorn, Katgert, \& de Bruyn 2003

Polarization Basics

on-axis linear polarization (VLA 1-50 GHz)

- VLA full polarization provides $R^{*} R, L^{*} L, R^{*} L, L^{*} R$
- Stokes Parameter (circular basis; interferometer):

$$
\begin{aligned}
& -I=(R R+L L) / 2 ; V=(R R-L L) / 2 \\
& -Q=(R L+L R) / 2 ; U=(R L-L R) / 2 i
\end{aligned}
$$

- Polarized intensity $P=\sqrt{Q^{2}+U^{2}+V^{2}}$
- Polarization angle: $\chi=0.5 \cdot \operatorname{atan} 2(U / Q)$

Linear Polarization Observation Preparation

 general recipe for circular basisTwo additional calibrators are needed:

- Leakage Calibrator (D-terms):

Determine frequency dependent polarization impurity between the R and L polarizations (per-channel $S / N>10$).

- Absolute Polarization Angle Calibrator:

Determine the R-L phase/delay offsets.

Your flux density/bandpass calibrator and complex gain calibrator can double as polarization calibrators. Requiring no additional overheads in this case.

Linear Polarization Observation Preparation

general recipe for circular basis

Different observing strategies for leakages:
I. Unpolarized Leakage Calibrator: Df (one scan sufficient)
2. Polarized/or Unknown polarization Leakage Calibrator: $D f+Q U$ (at least 3 scans; >60 deg. parallactic angle coverage)
3. Known polarization Leakage Calibrator: Df+X (at least 2 scans; >30 deg. parallactic angle coverage; known polarized model)

Note: In case of strategy 2: If the leakage calibrator has significant frequency dependent polarization properties, i.e. large rotation measure, the derived D-terms will be less accurate. CASA currently does not support Df+QUf.

For Polarization Angle Calibrator, a single scan on a bright source with known polarization is sufficient (Typically 3C48, 3CI38, or 3C286).

Polarization Calibration

 on-axis linear polarization (VLA I - 50 GHz)- Parallel Hand Calibration for Stokes I discussed by Amy Kimball
- For Cross-hand calibration we need three fundamental steps and one step to prepare:

0. Preparation
I. Correct for any signal delay offset between the R and L circular pol.
1. Correct for leakage of signal between the $R \& L$ circular pol. signals; i.e. instrumental leakage
2. Align the phases of the RL visibilities to obtain information on the orientation of the measured linear polarization angle.
3. Apply calibration tables \& inspect results

Some words about the VLA pipeline

- VLA calibration pipeline currently does not support polarimetry (except forVLASS)
- Can use parallel hand calibration of pipeline in two ways to follow the steps discussed in this presentation:
I. Carry all calibration tables generated and used in the final applycal step to continue polarization calibration.

2. Revert application of parallactic angle correction, then apply calibration from pipeline and split out the corrected column.

- VLA pipeline discussed later today, here we focus on the polarization calibration steps that are universal.

Step 0: Preparation

Example dataset: 3C 75

[] [SYSTEM_CONFIGURATION\#UNSPECIFIED]
[SYSTEM_CONFIGURATION\#UNSPECIFIED]
 [CALIBRATE_AMPI
COLBRATE_AMPLI\#UNSPECIFIED, CALIBRATE_PHASE\#UNSPECIFIED, CALIBRATE_POL_LEAKAGE\#UNSPECIFIED] [CALIBRATE_AMPLI\#UNSPECIFIED, CALIBRATE_PHASE\#UNSPECIFIED,CALIBRATE_POL_LEAKAGE\#UNSPECTFIED] [OBSERVE_TARGET\#UNSPECTFIED] CIBRATE_PHASE\#UNSPECTFIED, CALIBRATE_POL_LEAKAGE\#UNSPECIFIED] [OBSERVE_TARGET\#UNSPECIFIED] [CALIBRATE_AMPLI\#UNSPECIFIED [OBSERVE_TARGET\#UNSPECIFIED] [CALIBRATE_AMPLI\#UNSPECIFIED, CALIBRATE PHASE\#UNSPECIFIED, CALIBRATE POL LEAKAGE\#UNSPECIFIED] [OBSERVE_TARGET\#UNSPECTFIED] [CALIBRATE_AMPLI\#UNSPECIFIED, CALIBRATE_PHASE\#UNSPECIFIED, CALIBRATE_POL_LEAKAGE\#UNSPECTFIED] [CALIBRATE_AMPLI\#UNSPECIFIED, CALIBRATE_PHASE\#UNSPECIFIED, CALIBRATE_POL_LEAKAGE\#UNSPECTFIED] [OBSERVE_TARGET\#UNSPECIFIED] [CALIBRATE_AMPLI\#UNSPECIFIED, CALIBRATE PHASE\#UNSPECIFIED, CALIBRATE POL LEAKAGE\#UNSPECTFIED] [OBSERVE_TARGET\#UNSPECIFIED] [CALIBRATE_AMPLI\#UNSPECIFIED, CALIBRATE_PHASE\#UNSPECIFIED, CALIBRATE_POL_LEAKAGE\#UNSPECIFIED] [CALIBRATE_AMPLI\#UNSPECIFIED]

- Frequency setup: $8 \times 128 \mathrm{MHz}$ spectral windows, $2.488-3.5 \mathrm{I} 2 \mathrm{GHz}$
- Target: 3C 75 (intent = OBSERVE_TARGET)
- Bandpass/Flux Density Calibrator: 3C 48 (I scan)
- Instrumental polarization calibrator (D-term): J0259+0747
- Guess why we also observed J2355+4950?
(marked as phase calibrator)

Inspect dataset

RL/LR Amplitudes - residual RFI

Additional flagging of RL/LR

```
# for all correlations
flagdata(vis='TDRW000I_calibrated.ms',
    mode='tfcrop',
    field='0~2',
    correlation=",
    freqfit = 'line',
    extendflags = False,
    flagbackup = False)
# for the cross-hands
flagdata(vis='TDRW000 I_calibrated.ms',
    mode = 'rflag',
    datacolumn='data',
    field = '0~2',
    correlation='RL,LR',
    extendflags = True,
    flagbackup = False)
```


RL/LR Amplitudes - after flagging

Linear polarization angle calibrator models

- You can find broad-band polarimetric information on 3C48, 3C138, 3C147, and 3C286 in Perley \& Butler (2013)
- Note, 3C48, 3C138, and 3C147 are variable. Updated values from 2019 available on VLA webpages:
- https://science.nrao.edu/facilities/vla/docs/manuals/oss/performance/fdsca le
- https://science.nrao.edu/facilities/vla/docs/manuals/obsguide/modes/pol
- http://www.aoc.nrao.edu/~fschinze/DRW21/ (for 3C48)
- Additional calibrators monitored through projects TPOL0003 \& TCAL0009, currently you have to reduce this data yourself if needed.
- We are working on providing time and frequency dependent models in the near future.

Note: setjy in manual w/o model assumes all emission is from a point source at the phase center! No spatial models are provided within CASA or by NRAO for polarimetry.

```
standard = 'manual' # Flux density standard
fluxdensity = [1, 0, 0, 0] # Specified flux density in Jy [I,Q,U,V]
spix = [] # Spectral index (including higher terms) of I fluxdensity
reffreq = " # Reference frequency for spix
polindex = [] # Coeff. of an expansion of freq.-dependent linear pol. fraction
polangle = [] # Coeff. of an expansion of freq.-dependent pol. angle (in radians)
rotmeas = 0.0 # Rotation measure (in rad/m^2)
```

$$
\begin{aligned}
& S(v)=\text { fluxdensity }[0] * \frac{v}{\text { reffreq }} \text { spix }[0]+\operatorname{spix}[1] * \log (v / \text { reffreq })+. . \\
& P I=\frac{\sqrt{Q^{2}+U^{2}}}{I}=p 0+p 1 * \frac{v-\text { reffreq }}{\text { reffreq }}+p 2 *\left(\frac{v-\text { reffreq }}{\text { reffreq }}\right)^{2}+\ldots \\
& \chi=0.5 \arctan \frac{U}{Q}=a 0+a 1 * \frac{v-\text { reffreq }}{\text { reffreq }}+a 2 *\left(\frac{v-\text { reffreq }}{\text { reffreq }}\right)^{2}+. .
\end{aligned}
$$

3C48: Lin. Pol. Angle Calibrator

CASA task setjy (https://casa.nrao.edu/casadocs/casa-6.I.0/global-task-list/task_setjy/about)

Common question: determining the coefficients for 3C48 at S-band - Spix http://www.aoc.nrao.edu/~fschinze/DRW2 I/fit I.py

We use known values of 3C48 to fit Stokes I and spectral index \& curvature.

$$
\begin{gathered}
\text { I@3GHz }=8.5555 \mathrm{Jy} \\
\text { spix }=[-0.88640, \\
-0.14323]
\end{gathered}
$$

CASA task setjy (https://casa.nrao.edu/casadocs/casa-6.I.0/global-task-list/task_setiy/about)

Common question: determining the coefficients for 3C48 at S-band - polindex http://www.aoc.nrao.edu/~fschinze/DRW2 I/fit PF.py

We use known values of 3C48 to fit linear polarization fraction.

$$
\begin{array}{r}
\text { polindex }=[0.02152579 \\
0.03924469 \\
0.00382036 \\
\\
-0.0192665]
\end{array}
$$

CASA task setjy (https://casa.nrao.edu/casadocs/casa-6.I.0/global-task-list/task_setjy/about)

Common question: determining the coefficients for 3C48 at S-band - polangle http://www.aoc.nrao.edu/~fschinze/DRW2 I/fit PA.py

We use known values of 3C48 to fit linear polarization angle in radians.

$$
\begin{aligned}
\text { polangle }= & {[-2.74383385,} \\
& 1.77521589, \\
& -1.76969593, \\
& 0.60267279 \\
& 0.96191507]
\end{aligned}
$$

Putting it all together in a setjy() call

```
%cpaste
reffreq = '3.0 GHz' # reference frequency for fit values
I = 8.5555 # Stokes I flux density @ reference frequency
alpha = [-0.8864, -0.14323] # spectral index and curvature
polindex = [0.02152579,0.03924469,0.00382036,-0.0192665] # polarization fraction
polangle = [-2.74383385, I.7752I589,-I.76969593,0.60267279,0.96|9|507] # pol. angle
mysetjy = setjy(vis = 'TDRW000I_calibrated.ms',
    field='0137+33I=3C48',
    scalebychan=True,
    standard='manual',
    fluxdensity=[l,0,0,0],
    spix=alpha,
    reffreq=reffreq,
    polindex=polindex,
    polangle=polangle,
    rotmeas=0,
    usescratch=True)
```


Check the model was set correctly

RL amplitude

Amp:model vs. Frequency
RR amplitude
Amp:model vs. Frequency

Step I: Determine R-L delay

Solving for the cross-hand delays

```
# solve using Single Band Delay
kcross_sbd = 'TDRW000I_calibrated.Kcross_sbd'
gaincal(vis='TDRW000I_calibrated.ms',
    caltable=kcross_sbd,
    field='0137+33|=3C48',
    spw='0~7:5~58',
    refant='eal0',
    gaintype='KCROSS',
    solint='inf',
    combine='scan',
    calmode='ap',
    append=False,
    gaintable=["],
    gainfield=["],
    interp=["],
    spwmap=[[]],
    parang=True)
```


Solving for the cross-hand delays Output printed in the logger

For single band delay there are 8 solutions:
Spw=0 Global cross-hand delay=5.71477 nsec
Spw=I Global cross-hand delay=I.5I269 nsec
Spw=2 Global cross-hand delay=-I. 36895 nsec
Spw=3 Global cross-hand delay=0.468607 nsec
Spw=4 Global cross-hand delay=4.29537 nsec
Spw=5 Global cross-hand delay=I. 23363 nsec
Spw=6 Global cross-hand delay=3.72454 nsec
Spw=7 Global cross-hand delay=3.04475 nsec

Solving for the cross-hand delays visualize resulting delays

Solving for the cross-hand delays

```
# solve using Multi-Band Delay
%cpaste
kcross_mbd = 'TDRW000 I_calibrated.Kcross_mbd'
gaincal(vis='TDRW000I_calibrated.ms',
    caltable=kcross_mbd,
    field='0I37+33I=3C48',
    spw='0~7:5~58',
    refant='ea IO',
    gaintype='KCROSS',
    solint='inf',
    combine='scan,spw', # combine spectral windows
    calmode='ap',
    append=False,
    gaintable=["],
    gainfield=["],
    interp=["],
    spwmap=[[]],
    parang=True)
```


Solving for the cross-hand delays Output printed in the logger

For single band delay there are 8 solutions:
Spw=0 Global cross-hand delay=5.71477 nsec
Spw=I Global cross-hand delay=1.5I269 nsec
Spw=2 Global cross-hand delay=-I. 36895 nsec
Spw=3 Global cross-hand delay=0.468607 nsec
Spw=4 Global cross-hand delay=4.29537 nsec
Spw=5 Global cross-hand delay=1.23363 nsec
Spw=6 Global cross-hand delay=3.72454 nsec
Spw=7 Global cross-hand delay=3.04475 nsec
mean: 2.33 nsec; median: 2.28 nsec

For multiband delay there is one solution:
Multi-band cross-hand delay=3.68198 nsec

Step 2: Determine Polarization Leakage b/w R \& L

Solving for instrumental polarization J0259+0747

~33 degrees parallactic angle coverage 10 scans/slices; Flux density ~ 0.9 Jy
$95^{\text {th }}$ percentile spurious on-axis fractional linear pol. [\%] for 10 slice strategy with calibrator L/I~3\%

S/N [Stokes I, Nant=27, 1 channel, 1 slice]
Hales (2017)
I min scan $\sim 900 \mathrm{~S} / \mathrm{N} \sim 1 \%$ on-axis spurious will check using J2355+7828

Solving for instrumental polarization J0259+0747 / Df+QU - polarized

```
%cpaste
dtab_00259 = 'TDRW000I_calibrated.DfQU'
polcal(vis='TDRW000I_calibrated.ms',
    caltable=dtab_J0259,
    intent='CALIBRATE_POL_LEAKAGE#UNSPECIFIED',
    spw='0~7',
    refant='eal0',
    poltype='\mathbf{Df+QU',}
    solint='inf,2MHz',
    combine='scan',
    gaintable=[kcross_mbd], # Note, we are using the multi-band Kcross delay solutions.
    gainfield=["],
    spwmap=[[0,0,0,0,0,0,0,0]],
    append=False)
```


Solving for instrumental polarization J0259+0747 / Df+QU - polarized

Check output in logger:
Fractional polarization solution for J0259+0747 (spw = 0): : $\mathrm{Q}=0.026 \mathrm{I} 594, \mathrm{U}=0.0334233$
($P=0.0424432, X=25.9754 \mathrm{deg}$)
Fractional polarization solution for J0259+0747 (spw = I): : Q = 0.0145776, U = 0.038399
($P=0.04 \mathrm{I} 073, X=34.6057 \mathrm{deg}$)
Fractional polarization solution for J0259+0747 (spw = 2): : Q = 0.016288, U = 0.0391953 ($\mathrm{P}=0.042445, \mathrm{X}=33.7 \mathrm{I} 7 \mathrm{I} \mathrm{deg}$)
Fractional polarization solution for J0259+0747 (spw = 3): : Q = 0.0 I I I993, U = 0.04 I723
($P=0.0432, X=37.4874 \mathrm{deg}$)
Fractional polarization solution for J0259+0747 (spw = 4): : Q = 0.00822594, U = 0.040461
($P=0.04 \mathrm{I} 2887, X=39.254 \mathrm{deg}$)
Fractional polarization solution for J0259+0747 (spw = 5): : Q = 0.006058I8, U = 0.04I0209 ($P=0.04 \mathrm{I} 4658, \mathrm{X}=40.7995 \mathrm{deg}$)
Fractional polarization solution for J0259+0747 (spw = 6): : Q = -0.00I89636, $\mathrm{U}=0.04328 \mathrm{I} 6$ ($\mathrm{P}=0.0433232, X=46.2544 \mathrm{deg}$)
Fractional polarization solution for J0259+0747 (spw = 7): : Q = -0.00785 I $28, \mathrm{U}=0.0475776$ ($P=0.04822 \mathrm{I}, \mathrm{X}=49.6853 \mathrm{deg}$)

Solving for instrumental polarization J0259+0747 / Df+QU - polarized - inspect results

Solving for instrumental polarization J0259+0747 / Df+QU - polarized - inspect results

Solving for instrumental polarization J2355+4950 / Df - unpolarized

```
dtab_l2355 = 'TDRW000 I_calibrated.Df'
polcal(vis='TDRW000I_calibrated.ms',
    caltable=dtab_\2355,
    field='J2355+4950',
    spw='0~7',
    refant='eal0',
    poltype='Df',
    solint='inf,2MHz',
    combine='scan',
    gaintable=[kcross_mbd],
    gainfield=["],
    spwmap=[[0,0,0,0,0,0,0,0]],
    append=False)
```


Solving for instrumental polarization - J2355+4950 / Df - unpolarized - inspect results

Solving for instrumental polarization Comparison Df+QU / Df

Df+QU
Gain Amp vs. Frequency Antenna: ea01@W06

Df

Flagging amplitude outliers in D-term solutions

In some cases there are outlier solutions above 0.25 that are most likely due to residual RFI. You can flag those using flagdata.

```
flagdata(vis=dtab \ 2355,
    mode='clip',
    correlation='ABS_ALL',
    clipminmax=[0.0, 0.25],
    datacolumn='CPARAM',
    clipoutside=True,
    action='apply',
    flagbackup=False,
    savepars=False)
```

flagdata(vis=dtab_J0259, mode='clip', correlation='ABS_ALL', clipminmax=[0.0, 0.25],
datacolumn='CPARAM', clipoutside=True, action='apply', flagbackup=False,
savepars=False)

This clips everything above $\mathbf{2 5 \%}$ instrumental polarization, which is unexpected.

Step 3: Determine/Set R-L phase

Setting R-L phase

To obtain accurate polarization position angle we need to rotate the R-L phase. We have set a model for 3C 48 before, which we will use now.

```
xtab = 'TDRW000I_calibrated.Xf'
polcal(vis='TDRW000I_calibrated.ms',
    caltable=xtab,
    spw='0~7',
    field='0137+33 I=3C48',
    solint='inf,2MHz',
    combine='scan',
    poltype='Xf',
    refant = 'ea l0',
    gaintable=[kcross_mbd,dtab_J0259],
    gainfield=[","],
    spwmap=[[0,0,0,0,0,0,0,0],[]],
    append=False)
```


Setting R-L phase Inspect results

Check output in logger:

$$
\begin{aligned}
& (\text { spw }=1)=75.1599 \mathrm{deg} . \\
& (\text { spw }=2)=65.9715 \mathrm{deg} . \\
& (\mathrm{spw}=3)=70.0648 \mathrm{deg} . \\
& (\mathrm{spw}=4)=67.361 \mathrm{deg} . \\
& (\mathrm{spw}=5)=68.2629 \mathrm{deg} . \\
& (\mathrm{spw}=6)=65.6135 \mathrm{deg} . \\
& (\mathrm{spw}=7)=64.6514 \mathrm{deg} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { plotms(vis=xtab, } \\
& \text { xaxis='frequency', } \\
& \text { yaxis='phase', } \\
& \text { coloraxis='spw') }
\end{aligned}
$$

Setting R-L phase

If we had used single band delays, the R-L phase solutions are independent for each spectral window, but should be flat if the R-L delay offset was set correctly.

single-band delay

multi-band delay

VLA RL phase stability

lonosphere - typically a few degrees at 3 GHz
3C286 RL

Large dTEC leads to Faraday rotation.

VLA RL phase stability

Instrumental - limit to ~ 5 deg. absolute accuracy

Step 4:Apply Calibration \& Inspect

Finally let's apply the calibration

```
applycal(vis = 'TDRW000 I_calibrated.ms',
    field=',
    gainfield=[", ", "],
    flagbackup=True,
    interp=[", ", "],
    gaintable=[kcross_mbd,dtab_J0259,xtab],
    spw='0~7',
    calwt=[False, False, False],
    applymode='calflagstrict',
    antenna='*&*',
    spwmap=[[0,0,0,0,0,0,0,0],[],[]],
    parang=True)
```


Inspect calibration - 3C48

```
plotms(vis='TDRW0001_calibrated.ms',field='0',correlation='',
    timerange=",antenna=",avgtime='60',
    xaxis='frequency',yaxis='amp',ydatacolumn='corrected',
    coloraxis='corr')
plotms(vis='TDRW0001_calibrated.ms',field='0',correlation='',
    timerange=",antenna=',avgtime='60',
    xaxis='frequency',yaxis='phase',ydatacolumn='corrected',
    plotrange=[-1,-1,-180,180],coloraxis='corr')
```


Inspect calibration - J0529+4950

```
plotms(vis='TDRW0001_calibrated.ms',field='1',correlation='',
    timerange=",antenna='',avgtime='60',
    xaxis='frequency',yaxis='amp',ydatacolumn='corrected',
    coloraxis='corr')
plotms(vis='TDRW0001_calibrated.ms',field='1',correlation='RR,LL',
    timerange=",antenna=',avgtime='60',
    xaxis='frequency',yaxis='phase',ydatacolumn='corrected',
    plotrange=[-1,-1,-180,180],coloraxis='corr')
```


Inspect calibration - J2355+4950

```
plotms(vis='TDRW0001_calibrated.ms',field='2',correlation='',
    timerange=',antenna=',avgtime='60',
    xaxis='frequency',yaxis='amp',ydatacolumn='corrected',
    coloraxis='corr')
plotms(vis='TDRW0001_calibrated.ms',field='2',correlation='',
    timerange='',antenna=',avgtime='60',
    xaxis='frequency',yaxis='phase',ydatacolumn='corrected',
    plotrange=[-1,-1,-180,180],coloraxis='corr',avgbaseline=True)
```


Polarization Calibration

some words on circular polarization

- Beam squint - R/L beams are offset from each other
- No calibrator with Stokes V=0?
- Also no known V>0 calibrator.
- Stokes V good diagnostic for issues in linear polarization calibration.
- plotms cannot plot Stokes yet.

Further Information

- Polarization CASA guide:
https://casaguides.nrao.edu/index.php?title=CASA Guides:Polarization Calibration based on CASA pipeline standard reduction: The radio g alaxy 3C75-CASA5.6.2
- VLA Polarimetry:
https://science.nrao.edu/facilities/vla/docs/manuals/obsguide/modes/p
ol
- CASA Polarimetry: https://casa.nrao.edu/casadocs/casa-6.1.0/calibration-and-visibility-data/synthesis-calibration/instrumental-polarization-calibration
- RL phase stability memo:
https://library.nrao.edu/public/memos/evla/EVLAM 205.pdf
- CASA Pipeline Requirements \& Design Specifications for Polarization: https://library.nrao.edu/public/memos/evla/EVLAM 201.pdf

> www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

