

Imaging

Preshanth Jagannathan

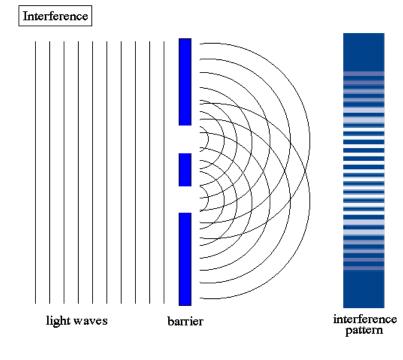
Overview

Fundamentals of Radio Interferometric Imaging.

- Van Cittert Zernike Theorem
- Imaging as a minimization problem

Task *tclean* and how it maps to the fundamentals of imaging.

Mapping your data onto the image

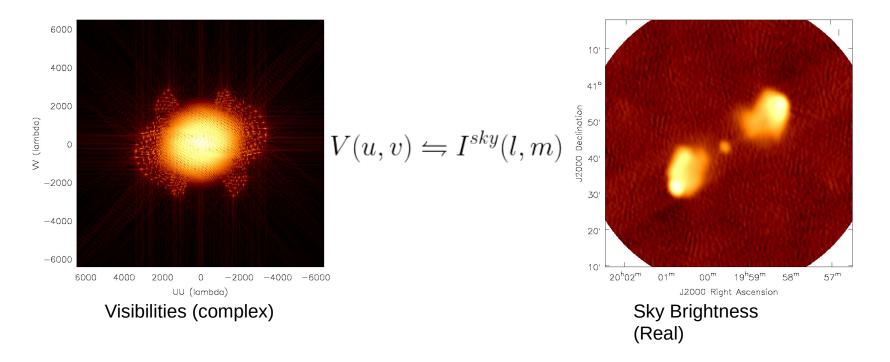

Comparison of the task to the algorithms.

Data files (1.25GB) for the demo along with a walkthrough script can be found at http://www.aoc.nrao.edu/~pjaganna/DRW_2022/

Interferometry

An interferometer is measuring the interference pattern of the sky per baseline.

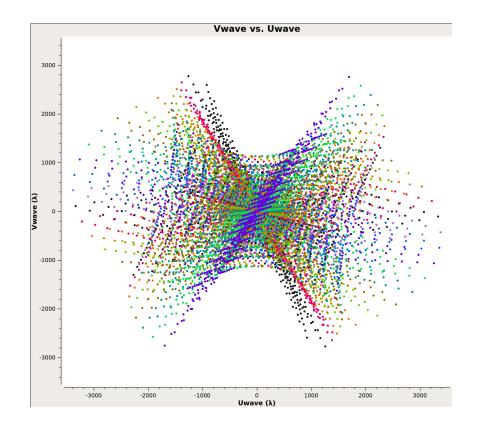
Parameters : Amplitude, Phase, Orientation, Wavelength



9th VLA DRW

VanCittert - Zernike Theorem

The observed complex visibilities are related to the sky brightness distribution via the Fourier transform.



Aperture Synthesis

Fill in the UV plane however possible

- Instantaneous snapshot at the VLA has 351 baselines per channel per timestep per polarization.
- Different Az-El corresponds to different points in the UV plane -Time dependence
- Different Observing frequencies also fills in different tracks

Task tclean

This casa task takes calibrated visibilities in the measurement set and produces an image according to the parameters defined by the user.

Clean is an iterative chi square minimization algorithm split into major and minor cycles traditionally to perform imaging (data to image) and deconvolution (removing the imprint of the PSF)

Major cycles are in the data domain - called imaging.

Minor cycles are in the image domain - deconvolution.

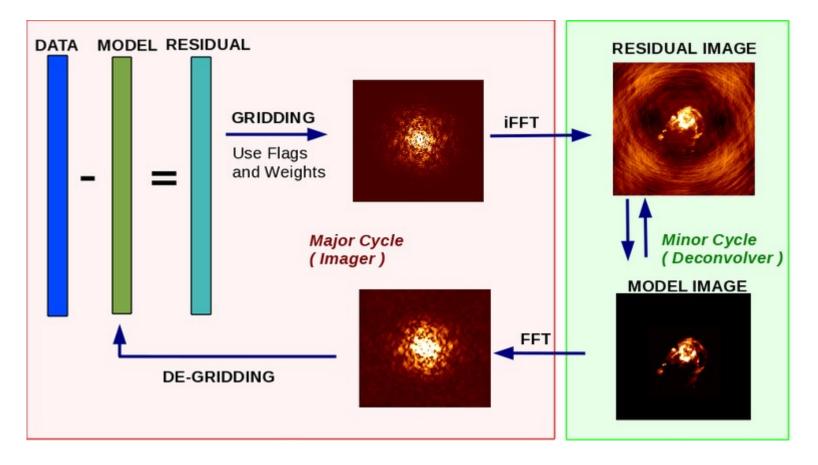
This is the task where you will typically spend about 80% of your data reduction time. So it is an important task to master.

Task tclean - Products

imagename.psf Point Spread Function				
imagename.pb Primary	Primary Beam of FoV			
imagename.residual	Residual image			
imagename.model	Model image - deconvolved components			
imagename.image	Restored output image.			
imagename.image.pbcor Primary Beam corrected image - I/PB				
imagename.mask	Deconvolution mask if specified.			
imagename.sumwt	A single pixel image containing the sum of weights			
imagename.weight	The visibility weight image.			
imagename.XX.tt{0,1,2} Multi-term images of Taylor coefficients.				
imagename.workdirectory Working directory with images created during a parallel run of tclean				

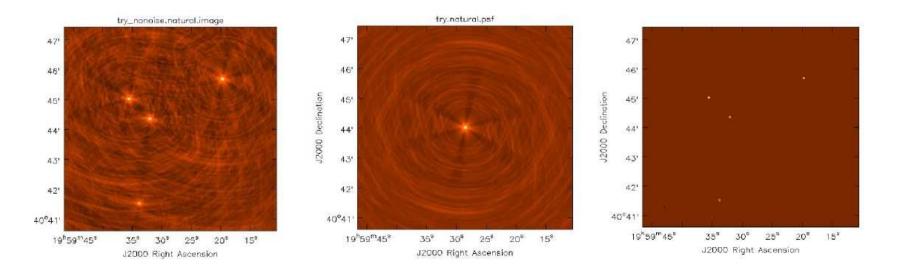
Task tclean

CASA <1>: inp tclean					
# tclean Radio Interferometric Image Reconstruction					
vis	= 111	# Name of input visibility file(s)			
selectdata	= True	# Enable data selection parameters			
field	= 11	# field(s) to select			
spw	= 11	<pre># spw(s)/channels to select</pre>			
timerange	= 11	# Range of time to select from data			
uvrange	= '''	# Select data within uvrange			
antenna	= 11	# Select data based on antenna/baseline			
scan	= '''	# Scan number range			
observation	= 11	# Observation ID range			
intent	= 11	# Scan Intent(s)			
datacolumn	= 'corrected'	# Data column to image(data,corrected)			
imagename	= '''	# Pre-name of output images			
imsize	= [100]	# Number of pixels			
cell	= []	# Cell size			
phasecenter	= '''	# Phase center of the image			
stokes	= 'I'	# Stokes Planes to make			
projection	= 'SIN'	# Coordinate projection			
startmodel	= '''	# Name of starting model image			


Task tclean

specmode	= 'mfs'	# Spectral definition mode (mfs,cube,cubedata, cubesource)
reffreq	= '''	# Reference frequency
gridder	= 'standard'	# Gridding options (standard, wproject, widefield, mosaic, awproject)
vptable	= 111	# Name of Voltage Pattern table
pblimit	= 0.2	# PB gain level at which to cut off normalizations
deconvolver	= 'hogbom'	# Minor cycle algorithm (hogbom,clark,multiscale,mtmfs,mem,clarkstokes)
restoration	= True	# Do restoration steps (or not)
restoringbeam	= []	# Restoring beam shape to use. Default is the PSF main lobe
pbcor	= False	# Apply PB correction on the output restored image
outlierfile	= '''	# Name of outlier-field image definitions
weighting	= 'natural'	# Weighting scheme (natural,uniform,briggs, briggsabs[experimental], briggsbwtaper[experimental])
uvtaper	= []	# uv-taper on outer baselines in uv-plane
niter	= 0	# Maximum number of iterations
usemask	= 'user'	# Type of mask(s) for deconvolution: user, pb, or auto-multithresh
mask	= 111	# Mask (a list of image name(s) or region file(s) or region string(s))
pbmask	= 0.0	# primary beam mask
fastnoise	= True	# True: use the faster (old) noise calculation. False: use the new improved noise calculations
restart	= True	# True : Re-use existing images. False : Increment imagename
savemodel	= 'none'	# Options to save model visibilities (none, virtual, modelcolumn)
calcres	= True	# Calculate initial residual image
calcpsf	= True	# Calculate PSF
psfcutoff	= 0.35	# All pixels in the main lobe of the PSF above psfcutoff are used to fit a Gaussian beam (the Clean beam).
parallel	= False	# Run major cycles in parallel

Imaging as a minimization problem



Deconvolution

$I^{obs}(l,m) = I^{PSF}(l,m) * I^{sky}(l,m)$

9th VLA DRW

Hogbom CLEAN

Sky Model : List of delta-functions

(1) Construct the observed (dirty) image and PSF

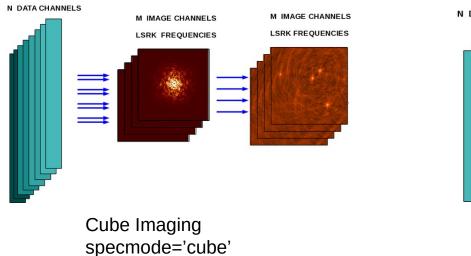
(2) Search for the location of peak amplitude.

(3) Add a delta-function of this peak/location to the model

(4) Subtract the contribution of this component

from the dirty image - a scaled/shifted copy of the PSF

Repeat steps (2), (3), (4) until a stopping criterion is reached.

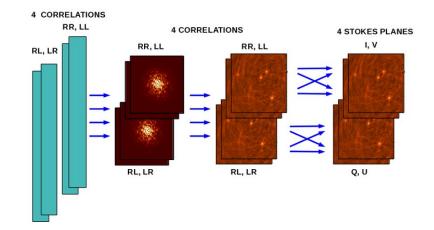

(5) Restore : Smooth the model with a 'clean beam' and

add residuals

Mapping Data to Images - I

specmode='cubedata'


N DATA CHANNELS


Continuum Imaging specmode='mfs'

- specmode = 'mfs' Continuum imaging. All channels on a single uv grid to produce an output image containing only one channel.
- specmode = 'cube' Mapping relevant visibilities onto a set of image channels based on the frequency resolution of the output image in velocity space in the choice of reference frame.
- specmode = 'cubedata' Mapping relevant visibilities on a set of image channels but a direct mapping not requiring a regrid in velocity space.

Mapping Data to Images - II

Continuum Imaging deconvolver = 'mtmfs' nterms = 2 Polarimetric Continuum Imaging stokes = 'IQUV'

Imaging in Practice - I

Step1 : Define image size, cell size and imagename

- 3 to 5 pixels across the psf for cell size.
- FoV that spans the full PB given cell size.
- https://science.nrao.edu/facilities/vla/docs/manuals/oss/ performance/resolution

Step2 : Pick a gridding algorithm and data weighting

- "standard" gridder
- "briggs" weighting

Step 3: Run iterative deconvolution

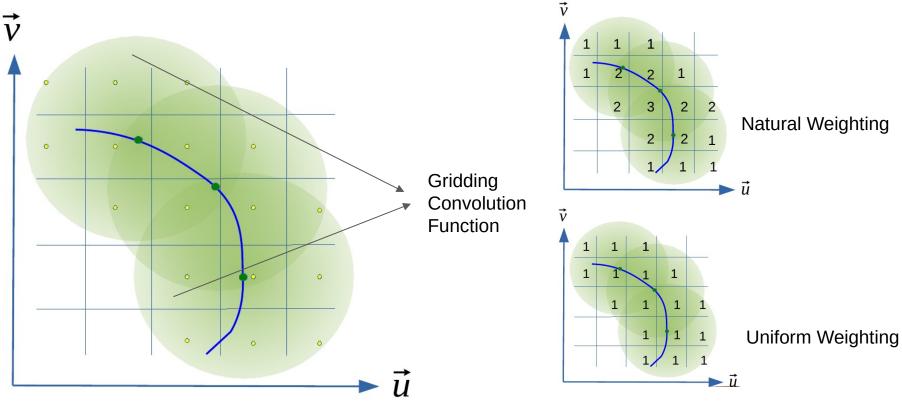
- "hogbom" deconvolver
- niter=200 iterations.

Imaging in Practice - II

Iteration control & stopping criterion

- 'niter' Maximum number of deconvolution iterations to perform
- 'threshold' Limit in flux density beyond which CLEANing will stop.
- 'nsigma' A computed limit based on the imaging sensitivity

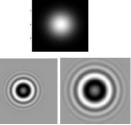
Masking


- Only needed when deconvolving complex structure
- Extended emission or a mixture of extended and compact emission

Masks can be drawn interactively, can also be supplied as a boolean image at the start of tclean.

Gridding & Weighting

Convolutional Resampling of visibilities onto the centers of the uv grid cells.

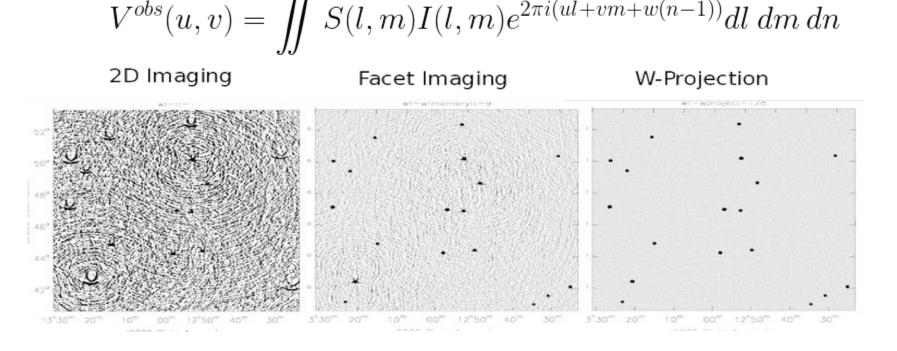


Task tclean - Gridders

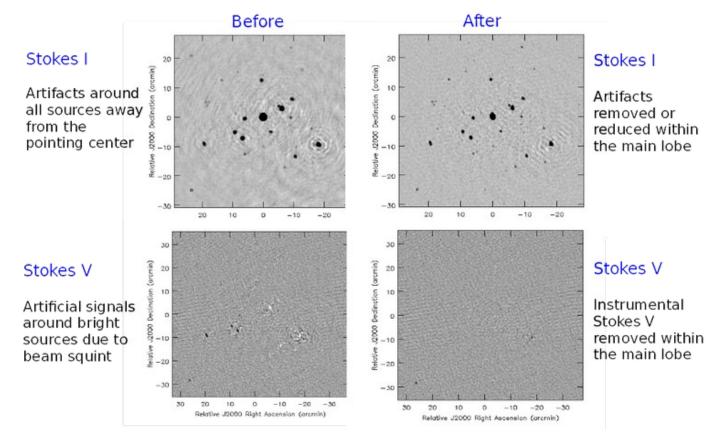
Gridding - Data domain operation of convolutional resampling of visibilities onto the centres of the uv cells.

Choice of an appropriate kernel can help correct for several direction dependent and instrumental effects.

- Standard gridder Prolate spheroidal function
 - gridder = 'standard'
- W-Projection gridder Frenel kernel
 - gridder = 'wproject'
- A-Projection gridder Aperture illumination function
 - gridder = 'awproject'
- Mosaic gridder Phase gradient + standard gridder + pbmodels
 - gridder = 'mosaic'

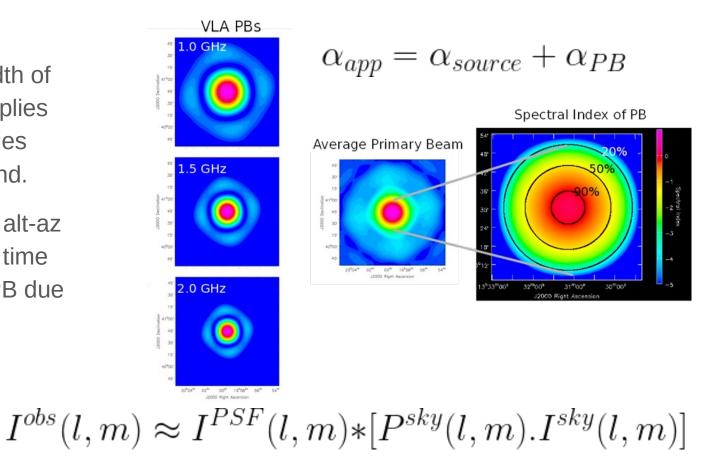


Widefield Imaging - W projection


$$V^{obs}(u,v) = \iint S(l,m)I(l,m)e^{2\pi i(ul+vm)}dl\,dm$$

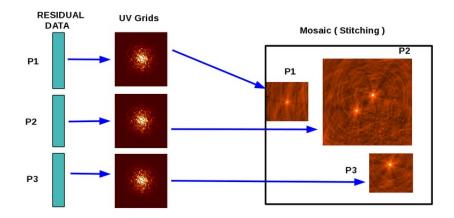
9th VLA DRW

Widefield Imaging - A Projection



9th VLA DRW

Widefield Wideband Imaging - AW Projection


The wide bandwidth of the VLA bands implies that the PB changes significantly in-band.

In addition VLA is alt-az mounted and has time variations in the PB due to field rotation

Mapping Data to Images - III

Joint UV Mosaic Imaging gridder = 'mosaic' gridder = 'awproject'

Linear/Joint Mosaic

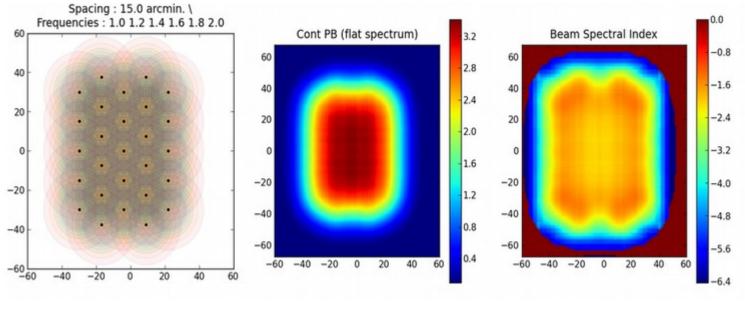
P1

P2

P3

RESIDUAL

1 UV Grid


DATA

P1

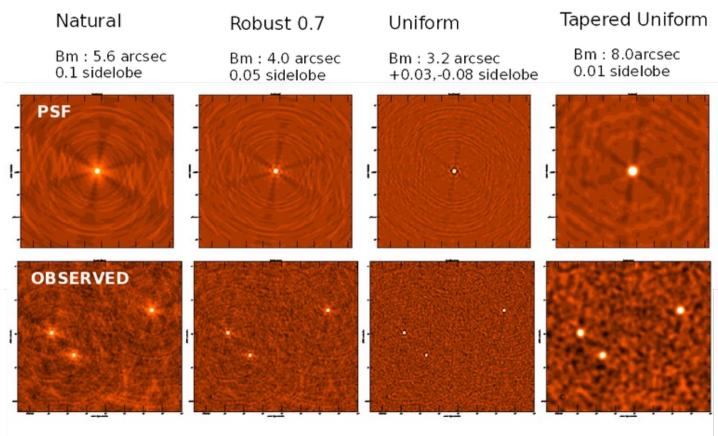
P2

P3

Widefield Imaging - Mosaicking

Mosaic PB alpha

Task tclean - Weighting


The gridded visibilities can be weighted differently to alter the sensitivity and the resolution of the psf.

- Natural Weighting Maximal sensitivity, wider psf, more sensitive to extended structure. weighting = 'natural'
- Uniform Weighting Reduced sensitivity, narrower psf, favors point sources.
 weighting = 'uniform'
- Briggs (Robust) Weighting Smoothly varying function between natural and uniform weighting. weighting = 'briggs', robust = -2 to 2
- UV Taper Emphasize larger scales in the data. uvtaper = []

Weighting

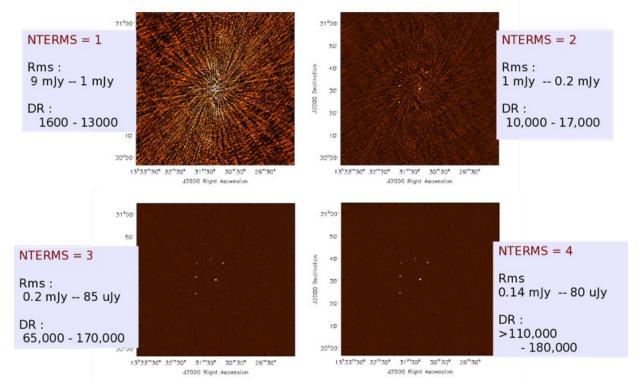
Task tclean - Deconvolver

deconvolver = 'hogbom' - Favors point sources, sky modelled as delta functions.

deconvolver = 'clark' - Favors point sources, sky modelled as delta functions, uses a small patch of psf rather than the whole.

deconvolver = 'multiscale' - Sky is modelled using a series of 2D gaussian basis. Circular basis functions convolved with a psf. Defined by **scales** parameter.

deconvolver = 'multiterm' - Wideband sky is modelled as Taylor polynomials across frequency. Allows you to discover the frequency dependence of the sky model in addition to its spatial scales. Defined by **nterms** and **scales** parameters


deconvolver = 'aasp' - Sky is modelled as a series of 2D gaussians but the number of gaussians needed and their size is automatically determined.

Wideband Imaging

Do the sources of interest in your field have significant spectral structure across the observed bandwidth ?

Are you dynamic range limited and your source still displays spokes ?

Task *tclean* - Runtime & Memory

Image size - Scales as the square of number of pixels.

Data size - Scales linearly as the number of visibilities

Gridding - Scales as a function of the algorithm and the corresponding convolution function size 3x3 for standard gridder to up to 200x200 for w-projection.

Deconvolver - MSClean and MTMFS require multiple scales or multiple terms to be gridded and held in memory so is significantly slower than hogbom or clark.

Iteration Control - The frequency of major cycles and sensitivity based stopping criterion

Hardware - Serial vs Parallel execution. OpenMP enabled ? RAM/core. Number of cores utilized overall.

Summary

Choice of algorithm is very important

- Gridder & weighting
- Deconvolution

Pick the algorithm/tool that is appropriate for your science.

Self-calibrate your images if needed. (Steve's talk)

A detailed imaging guide is available here <u>https://casaguides.nrao.edu/index.php?title=VLA_CASA_Imaging-CASA6.2.0</u>

If your image looks weird ask yourself the following questions

- Is my cell size correct ?
- Am I imaging all the emission in the field ?
- Is my algorithm appropriate for the data being reduced.

