
29 September 2023

Self-Calibration
Patrick Sheehan



Self-Calibration •  29 September 2023

A Quick review of calibration
Interferometers measure “visibilities”: the 
amplitude and phase information of the 
cross-correlated signals between pairs of 
antennas.
The true visibility is corrupted by many effects:
Antenna based:

– Atmospheric attenuation
– Radio “seeing”
– Variable pointing offsets
– Variable delay offsets
– Electronic gain changes
– Electronic delay changes
– Electronic phase changes

Baseline based:
– Radiometer noise
– Correlator malfunctions
– Most Interference signals



Mean Effect of Atmosphere on Phase - Refraction
● Index of refraction of atmosphere ≠ 1, an EM wave will experience refraction

● The phase change is related to the index of refraction of air and the distance 

travelled by δ𝜑 = 2π/λ x n D

● N = (n -1)x106 is typically separated into ‘dry’ air and water vapor components

                  N
dry

 = 2.2x105ρ
tot

             ρ
tot

  ~ 700 - 1000 g m-3

                  N
H2O

 = 1.7x109ρ
H2O

/T
atm

     ρ
H2O

 ~ 0.01 - 0.001ρ
tot 

 and T
atm

 ~ 270 K 

● Dry air dominates the refraction by ~10x, but water vapor is very time variable

● δ𝜑 ≅ 6.3 x 2π/λ x W where W is the PWV in mm



● Patches of air with different water vapor 
content (and hence index of refraction) affect 
the incoming wavefront differently.

● Spatial and temporal variations in the amount 
of PWV causes phase variations, which are 
worse at higher frequencies:

● You can observe in apparently excellent 
submm weather (low PWV) and still have 
terrible “seeing”, i.e. phase stability.

Mean Effect of Atmosphere on Phase - Refraction



● As a result of these temporal 
variations, a time-variable phase is 
added into the data collected from 
an given antenna in the array.

○ This phase is “antenna-based”, 
each antenna sees a different 
variation.

● This leads to:

○ Loss of coherence (reduced 
detected signal)

○ radio ‘seeing’ typicalling 0.1 - 1” 
at 1.3 mm

○ Anomalous pointing and delay 
offsets

Phase vs. time on bandpass calibrator for VLA K-band observations - mediocre weather

Mean Effect of Atmosphere on Phase - Refraction



• Important points to note about these effects:

• Decoherence does not (always) manifest 
in RMS noise for science target

• Overall image RMS may not change but 
peak intensity is reduced

• Example: VLA Ka-band data, C-config

• ~7 minute cycle time

Standard phase 
referencing:
Peak = 1.35 mJy/bm
rms ~11.2 uJy/bm

Self-calibration 12s 
Peak = 2.31 mJy/bm
rms ~10.2 uJy/bm

VLA Ka-band observations; C-config. 16A-197;HOPS-87

Mean Effect of Atmosphere on Phase
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A Quick review of calibration
We calibrate data by determining the complex 
gains (amplitude and  phase) and the frequency 
response (bandpass) for each antenna. To do 
this, we observe a bandpass, flux, and phase 
calibrator

What is special about the calibrators?

Phase vs UVdist
VLA Flux Calibrator 3C138
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A Quick review of calibration
We calibrate these data by determining the 
complex gains (amplitude and  phase) and the 
frequency response (bandpass) for each antenna. 
To do this, we observe a bandpass, flux, and 
phase calibrator

What is special about the calibrators?

• Sources are monitored

• Well known Flux and structure

• High SNR

• Point source (preferred) 

• No spectral Features (Bandpass)

• No short term variability Phase vs UVdist
VLA Flux Calibrator 3C138
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Correcting Visibilities

Using a model, we can determine 
corrections to make the data look like 
what we expect. 

Calibration 
Tables

Apply 
Calibration

A Quick Review of Calibration
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Models: Point Source

Fundamental Radio Astronomy II, 
Synthesis Imaging Workshop 2023, Rick 
Perley, NRAO/Socorro

Examples of Calibrator Models
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Models: Slightly resolved source

Fundamental Radio Astronomy II, 
Synthesis Imaging Workshop 2023, Rick 
Perley, NRAO/Socorro

Examples of Calibrator Models
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Models: Disk

Fundamental Radio Astronomy II, 
Synthesis Imaging Workshop 2023, Rick 
Perley, NRAO/Socorro

Examples of Calibrator Models
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Calibrator 1

Examples of Calibrator Models

Calibrator 2



Residual Phase and Decorrelation

● Observe the phase calibrator at 
regular intervals to measure the 
difference between the known 
phase of the calibrator source and 
the measured phase of the 
calibrator source as a function of 
time.

Phase vs. time on bandpass calibrator for VLA K-band observations - mediocre weather



Residual Phase and Decorrelation

● Observe the phase calibrator at 
regular intervals to measure the 
difference between the known 
phase of the calibrator source and 
the measured phase of the 
calibrator source as a function of 
time.

● Atmosphere needs to be stable 
enough such that residual phase is 
not too large

Phase vs. time on bandpass calibrator for VLA K-band observations - mediocre weather



Calibrator-Source Separation

● Distance from source to calibrator can be an important 

consideration

○ Further from target, the more “different” the 

atmosphere will be

● Becomes more important at higher frequencies

○ VLA - slew time becomes non-negligible if ‘fast’ 

switching

calibrator               target         calibrator       
target



Calibrator-Source Separation

● Distance from source to calibrator can be an important 

consideration

○ Further from target, the more “different” the 

atmosphere will be

● Becomes more important at higher frequencies

○ VLA - slew time becomes non-negligible if ‘fast’ 

switching

● Also for greater separations antenna positions need to 

be more accurate (in absence of self-calibration)

● See also L. Maud - High Frequency Observations
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atmosphere will be
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Residual Phase and Decorrelation

● Coherence = [vector avg]/[true vis 
amp] = <V>/V

o
 where, V=V

o
eiϕ

● <V> = V
o
<eiϕ>=V

o
e-ϕrms^2/2 (Gaussian 

phase fluctuations)

● Example: if ϕ
rms

 = 1 radian (~60o), 
coherence = <V> = 0.60V

o

• ϕ
rms

 = 30o coherence ~0.9 V
o

• Decorrelation on shortest calibration 
timescale can introduce fluxscale 
errors

Phase vs. time on bandpass calibrator for VLA K-band observations - mediocre weather
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Calibrator 1

Examples of Calibrator Models

Calibrator 2
Calibrator 3
(Off Center)



Not a calibrator!

• This source is not a calibrator, it is a 
science target. 

• What is stopping you from using this 
source as a calibrator?  
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Not a calibrator!

• This source is not a calibrator, it is a 
science target. 

• What is stopping you from using this 
source as a calibrator?

• Good news!  YOU CAN!

• Any source can be a calibrator if you 
have a good model of the source.

• “Self-calibration”

Self Calibration •  29 September 2023 22



Why self calibration?
• ALMA (and the JVLA) have such impressive sensitivity that what 

you achieve is often limited by residual calibration errors!

• To surpass this, many objects have enough Signal-to-Noise (S/N) 
that they can be  used to calibrate themselves to obtain a better 
image. This is self-calibration.

• Sometimes, the increase in effective sensitivity may be an order 
of magnitude!

• It is not a circular trick to produce the image that you want. 

• It works because the number of baselines is much larger than the number 
of antennas so that an approximate source image does not stop you from 
determining a better temporal gain calibration which leads to a better 
source image.
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Creating your own model

• Tclean creates models using the clean 
components when running.

• If what you clean is real, you can use the 
model for calibration.

• CAUTION: If you add sources that are not 
real, you can create fake structure in your 
data.

• This is more of a concern if the array has a 
small number of antennas such as the ACA, 
GMVA, EHT, or VLBA
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SNR for self-calibration:
•  
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SNR for self calibration:
•For amplitude self-cal: Need to detect the target with a S/N > 10 with only the baselines 
to a single antenna in a solution time (solint) less than the time for significant amplitude 
variations. For 25 antennas, an antenna based S/N > 10 will lead to a 10% amplitude 
error.

•Amplitude corrections are more subject to deficiencies in the model image.  Check 
results carefully!

• For example, if clean model is missing significant flux compared to uv-data, give 
uvrange for amplitude solution that excludes short baselines.
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Outline of Self-Calibration Process:
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How to proceed with self-calibration?
• What is a good solint

self
 to start with?

• Best practice is to start self-calibration gently with long solints, cleaning deeper with successive 
solution intervals as the data are corrected and model is improved

• Best Starting solution interval is long, length of full observation of a single source  for ALMA 
(~90 minutes) or ~1-2 hours for VLA; if observation length is longer, split into ~1 hour 
intervals

• neet to use solint=’inf’ and combine=’scan’ in gaincal

• This coarse solution interval will enable primarily direction-dependent errors to be 
corrected; i.e., antenna position errors which result in errors from phase referencing

• The level of improvement can be surprising from such a coarse correction

• Then solution interval should be shortened to length of 1 scan (solint=’inf’ and omit 
combine=’scan’)

• Solints spanning multiple scans not generally helpful since those corrections are taken 
care of by phase referencing

28



How to proceed with self-calibration? -cont’d
• Then proceed to solution intervals shorter than a single scan

• Most scans have similar length of time
• Given S/N of data what subdivision of scan lengths would most likely be successful?

• Generally dividing typical scan length by 2 or 3 repeatedly until solint=’int’ (single 
integration works well

• For example, if a scan is 60s
• 30s (30.25s)
• ~15s (18.15s or 12.1s)
• ~8s (or 6.05s)
• int
• Tip: When solution interval only has a few integrations, try to use an integer number of 

integrations in the solution interval

• Beware gaincal and uneven division of scans
• For example, if you have 45s scans, and do solint=’20s’, gaincal will divide the scan into 

2x 20s solints and 1x 5s solint which will have a factor of 2 lower S/N

29



How to proceed with self-calibration? -cont’d

• How deep to clean in each solution interval?
• General rule is to clean conservatively at the 

beginning, 
• avoid artifacts and do not clean below their 

level
• artifacts: symmetric or things that look like 

artificial patterns

30



How to proceed with self-calibration? -cont’d

• How deep to clean in each solution interval?
• General rule is to clean conservatively at the 

beginning, 
• avoid artifacts and do not clean below their 

level
• artifacts: symmetric or things that look like 

artificial patterns
• Good idea to clean interactively at first to get a feel 

for self-calibration and model creation
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How to proceed with self-calibration? -cont’d

• How deep to clean in each solution interval?
• General rule is to clean conservatively at the 

beginning, 
• avoid artifacts and do not clean below their 

level
• artifacts: symmetric or things that look like 

artificial patterns
• Good idea to clean interactively at first to get a feel 

for self-calibration and model creation
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How to proceed with self-calibration? -cont’d

• How deep to clean in each solution interval?
• General rule is to clean conservatively at the 

beginning, 
• avoid artifacts and do not clean below their 

level
• artifacts: symmetric or things that look like 

artificial patterns
• Good idea to clean interactively at first to get a feel 

for self-calibration and model creation
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Where to Stop?

34

• As long as you are seeing bonafide improvments in 
each successive solution interval, it’s safe to continue

• Peaks are not decreasing (adding phase noise in)
• RMS is not increasing (sign of adding noise or over 

flagging)
• artifacts are not emerging inexplicably
• beam is not changing significantly

• Best practice: After each round of selfcal, should make 
a ‘post-solint’ image, cleaned to exactly the same depth 
as the image for model creation

• Evaluate basic metrics above
• If metrics pass, try another, shorter solint
• If metrics fail, previous solution interval should be 

your final one



Other tips and tricks

35

• If you need more S/N for your solutions (gaincal is 
flagging them)

• solint is too short 

• Use gaintype=’T’ (combines the orthogonal 
polarizations)

• use combine=’spw’, combines data from all 
spws to create the gain solution (need to use 
spwmap parameter in applycal)

• If high dynamic range (>~500) for ALMA, try 
using deconvolver=’mtmfs’,nterms=2; the 
spectral shape of the emission may limit 
dynamic range with deconvolver=’hogbom’



hif_selfcal: Automated Self-Calibration



Triggering criteria and inputs into hif_selfcal task
• Will run on all single field targets

• hif_selfcal will no-op if it calculates selfcal will be of no benefit

• Estimates the gaincal solution SNR on a per solution interval, per antenna basis and only 
proceeds with a solution interval if above a threshold (default=3)

• Tunable parameters:

See https://science.nrao.edu/srdp/self-calibration-preview for more details

https://science.nrao.edu/srdp/self-calibration-preview


hif_selfcal heuristics
• Designed to mimic an 

interactive self-calibration 
workflow

• Heuristics added/developed 
to automate the process

Pipeline-calibrated 
_targets.ms files

Plan self-calibration

Generate “pre” image, 
model

Solve for gains, apply

Generate “post” image

Evaluate success

If successful:

Adjust self-calibration 
parameters (solint, 
clean threshold, etc.)

If unsuccessful:

Apply last successful 
(or remove) calibration



hif_selfcal heuristics
• Designed to mimic an interactive 

self-calibration workflow

• Self-calibration plan is set prior to 
executing self-calibration. This 
includes determining:

• Self-calibration solution 
intervals

• Start with long 
intervals (“inf”), 
shorten until (‘int’)

• Clean threshold for each 
interval

• Start shallow, increase 
depth



hif_selfcal heuristics
• Designed to mimic an 

interactive self-calibration 
workflow

• Generate an image prior 
to calibration, save the 
model to use for 
calculating gain tables.

• Automated using:

• Pre-defined clean 
thresholds

• Auto-masking to 
define regions to 
clean

Pipeline-calibrated 
_targets.ms files

Plan self-calibration

Generate “pre” image, 
model

Solve for gains, apply

Generate “post” image

Evaluate success

If successful:

Adjust self-calibration 
parameters (solint, 
clean threshold, etc.)

If unsuccessful:

Apply last successful 
(or remove) calibration



hif_selfcal heuristics
• Designed to mimic an interactive 

self-calibration workflow

• Metrics evaluated to determine 
the success of the calibration:

• Pre-vs-post SNR

• Evaluated outside the 
“post” clean mask

• Pre-vs-post beam size

• Pre-vs-post “near-field” SNR 
calculated but not a decision 
point at this time

• SNR with the noise 
calculate near to sources in 
the image

Pipeline-calibrated 
_targets.ms files

Plan self-calibration

Generate “pre” image, 
model

Solve for gains, apply

Generate “post” image

Evaluate success



Example of improvement in image quality

Initial
SNR = 285

inf_EB
SNR = 402

inf
SNR = 776

int
SNR = 1151



hif_selfcal output - weblog



Features in current release vs future releases

In the recent Pipeline release:

• Self-calibration of 
single-pointing ALMA (and VLA) 
datasets

• Multi-source EBs work

• I.e. no mosaics

In the Standalone development branch:

• Near-field heuristics with improved near-field 
mask generation

• Improved heuristics for “long baseline” 
datasets

• Mosaics work

• Available here soon (when stable): 
https://github.com/jjtobin/auto_selfcal.git

• Or here now (development): 
https://github.com/psheehan/auto_selfcal.git 

https://github.com/jjtobin/auto_selfcal.git
https://github.com/psheehan/auto_selfcal.git


Summary

45

• Self-calibration is not magic, but rather a well-understood process to improve (sometimes drastically) 
the quality of data from interferometers
• Care and caution is required, but is not tremendously difficult
• Make sure your model is a good representation of the data
• Make sure the data you put into solver, is a good match to the model
• If you are lacking a little in S/N try one of the “S/N increase techniques”
• If you really don’t have enough S/N don’t keep the dodgy results!

• For more examples, advice, and explanatory details see:
• Advanced Gain Calibration Techniques in Radio Interferometry (https://arxiv.org/abs/1805.05266)

Crystal Brogan, Todd Hunter, Ed Fomalont

• Automated self calibration is now a reality for continuum data
• CASA-integrated pipeline version (based on stable version)

• https://science.nrao.edu/srdp/self-calibration-preview 
• Also available via ALMA reimaging service within NRAO archive (https://data.nrao.edu)

https://science.nrao.edu/srdp/self-calibration-preview
https://data.nrao.edu


• ALMA Self-cal Tutorial
• https://casaguides.nrao.edu/index.php?title=First_Look_at_Self_Calibration_CA

SA_6

• VLA Self-cal Tutorial

• https://casaguides.nrao.edu/index.php?title=VLA_Self-calibration_Tutorial-CAS
A6.4.1 

• Self Calibration Pipeline Preview

• https://science.nrao.edu/srdp/self-calibration-preview

Self-Cal 
Resources
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https://casaguides.nrao.edu/index.php?title=First_Look_at_Self_Calibration_CASA_6
https://casaguides.nrao.edu/index.php?title=First_Look_at_Self_Calibration_CASA_6
https://casaguides.nrao.edu/index.php?title=VLA_Self-calibration_Tutorial-CASA6.4.1
https://casaguides.nrao.edu/index.php?title=VLA_Self-calibration_Tutorial-CASA6.4.1
https://science.nrao.edu/srdp/self-calibration-preview
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