

### Self-Calibration

Patrick Sheehan 29 September 2023



### A Quick review of calibration

Interferometers measure "visibilities": the amplitude and phase information of the cross-correlated signals between pairs of antennas.

The true visibility is corrupted by many effects:

Antenna based:

- Atmospheric attenuation
- Radio "seeing"
- Variable pointing offsets
- Variable delay offsets
- Electronic gain changes
- Electronic delay changes
- Electronic phase changes

Baseline based:

- Radiometer noise
- Correlator malfunctions
- Most Interference signals









### **Mean Effect of Atmosphere on Phase - Refraction**

- Index of refraction of atmosphere  $\neq$  1, an EM wave will experience refraction
- The phase change is related to the index of refraction of air and the distance travelled by  $\delta \varphi = 2\pi/\lambda \times n D$
- N = (n -1)x10<sup>6</sup> is typically separated into 'dry' air and water vapor components N<sub>dry</sub> = 2.2x10<sup>5</sup> $\rho_{tot}$   $\rho_{tot}$  ~ 700 - 1000 g m<sup>-3</sup> N<sub>H20</sub> = 1.7x10<sup>9</sup> $\rho_{H20}/T_{atm}$   $\rho_{H20}$  ~ 0.01 - 0.001 $\rho_{tot}$  and  $T_{atm}$  ~ 270 K
- Dry air dominates the refraction by ~10x, but water vapor is very time variable
- $\delta \varphi \cong 6.3 \times 2\pi / \lambda \times W$  where W is the PWV in mm



\_\_\_\_

### **Mean Effect of Atmosphere on Phase - Refraction**

- Patches of air with different water vapor content (and hence index of refraction) affect the incoming wavefront differently.
- Spatial and temporal variations in the amount of PWV causes phase variations, which are worse at higher frequencies:
- You can observe in apparently excellent submm weather (low PWV) and still have terrible "seeing", i.e. phase stability.

# 





### **Mean Effect of Atmosphere on Phase - Refraction**

- As a result of these temporal variations, a time-variable phase is added into the data collected from an given antenna in the array.
  - This phase is "antenna-based", each antenna sees a different variation.
- This leads to:
  - Loss of coherence (reduced detected signal)
  - radio 'seeing' typicalling 0.1 1" at 1.3 mm
  - Anomalous pointing and delay offsets



Phase vs. time on bandpass calibrator for VLA K-band observations - mediocre weather



### **Mean Effect of Atmosphere on Phase**

- Important points to note about these effects:
  - Decoherence does not (always) manifest in RMS noise for science target
  - Overall image RMS may not change but peak intensity is reduced
- Example: VLA Ka-band data, C-config
  - ~7 minute cycle time

Self-calibration 12s Peak = 2.31 mJy/bm rms ~10.2 uJy/bm

Standard phase

Peak = 1.35 mJy/bm rms ~11.2 uJy/bm

referencing:

VLA Ka-band observations; C-config. 16A-197;HOPS-87







National Radio Astronomy Observatory

### A Quick review of calibration

We calibrate data by determining the complex gains (amplitude and phase) and the frequency response (bandpass) for each antenna. To do this, we observe a bandpass, flux, and phase calibrator

What is special about the calibrators?



### Phase vs UVdist

VLA Flux Calibrator 3C138





### A Quick review of calibration

We calibrate these data by determining the complex gains (amplitude and phase) and the frequency response (bandpass) for each antenna. To do this, we observe a bandpass, flux, and phase calibrator

#### What is special about the calibrators?

- Sources are monitored
- Well known Flux and structure
  - High SNR
  - Point source (preferred)
  - No spectral Features (Bandpass)
  - No short term variability



# **Phase vs UVdist**

VLA Flux Calibrator 3C138





### **A Quick Review of Calibration**



Self-Calibration • 29 September 2023



Astronomy NRAO Observatory



#### Models: Point Source

Fundamental Radio Astronomy II, Synthesis Imaging Workshop 2023, Rick Perley, NRAO/Socorro

3000, 5000)



National Radio Astronomy Observatory





#### Models: Slightly resolved source

Fundamental Radio Astronomy II, Synthesis Imaging Workshop 2023, Rick Perley, NRAO/Socorro



National Radio Astronomy Observatory



#### Models: Disk

Fundamental Radio Astronomy II, Synthesis Imaging Workshop 2023, Rick Perley, NRAO/Socorro



National Radio Astronomy Observatory

**Calibrator 1** 



**Calibrator 2** 

#### NSF A National Rac Astronomy NRAO Observatory

### **Residual Phase and Decorrelation**

 Observe the phase calibrator at regular intervals to measure the difference between the known phase of the calibrator source and the measured phase of the calibrator source as a function of time.



Phase vs. time on bandpass calibrator for VLA K-band observations - mediocre weather



### **Residual Phase and Decorrelation**

- Observe the phase calibrator at regular intervals to measure the difference between the known phase of the calibrator source and the measured phase of the calibrator source as a function of time.
- Atmosphere needs to be stable enough such that residual phase is not too large



Phase vs. time on bandpass calibrator for VLA K-band observations - mediocre weather



### **Calibrator-Source Separation**

- Distance from source to calibrator can be an important consideration
  - Further from target, the more "different" the atmosphere will be
- Becomes more important at higher frequencies
  - VLA slew time becomes non-negligible if 'fast' switching





### **Calibrator-Source Separation**

- Distance from source to calibrator can be an important consideration
  - Further from target, the more "different" the atmosphere will be
- Becomes more important at higher frequencies
  - VLA slew time becomes non-negligible if 'fast' switching
- Also for greater separations antenna positions need to be more accurate (in absence of self-calibration)
- See also L. Maud High Frequency Observations







### **Calibrator-Source Separation**

- Distance from source to calibrator can be an important consideration
  - Further from target, the more "different" the atmosphere will be
- Becomes more important at higher frequencies
  - VLA slew time becomes non-negligible if 'fast' switching
- Also for greater separations antenna positions need to be more accurate (in absence of self-calibration)
- See also L. Maud High Frequency Observations







### **Residual Phase and Decorrelation**

- Coherence = [vector avg]/[true vis amp] = <V>/V<sub>o</sub> where, V=V<sub>o</sub>e<sup>iφ</sup>
- $\langle V \rangle = V_o \langle e^{i\phi} \rangle = V_o e^{-\phi rms^2/2}$  (Gaussian phase fluctuations)
- Example: if  $\phi_{rms} = 1$  radian (~60°), coherence =  $\langle V \rangle = 0.60V_o$
- $\phi_{\rm rms} = 30^{\circ}$  coherence ~0.9 V<sub>o</sub>
- Decorrelation on shortest calibration timescale can introduce fluxscale errors



Phase vs. time on bandpass calibrator for VLA K-band observations - mediocre weather



**Calibrator 1** 



Right Ascension (arcsec)

#### **Calibrator 2**

### Calibrator 3 (Off Center)





### Not a calibrator!

- This source is not a calibrator, it is a science target.
- What is stopping you from using this source as a calibrator?





### Not a calibrator!

- This source is not a calibrator, it is a science target.
- What is stopping you from using this source as a calibrator?
- Good news! YOU CAN!
  - Any source can be a calibrator if you have a good model of the source.
  - "Self-calibration"





### Why self calibration?

- ALMA (and the JVLA) have such impressive sensitivity that what you achieve is often limited by residual calibration errors!
- To surpass this, many objects have enough Signal-to-Noise (S/N) that they can be used to calibrate *themselves* to obtain a better image. This is self-calibration.
  - Sometimes, the increase in effective sensitivity may be an *order of magnitude!*
- It is not a circular trick to produce the image that you want.
  - It works because the number of baselines is much larger than the number of antennas so that an approximate source image does not stop you from determining a better temporal gain calibration which leads to a better source image.







National Radio Astronomy Observatory

# **Creating your own model**

- Tclean creates models using the clean components when running.
  - If what you clean is real, you can use the model for calibration.
  - CAUTION: If you add sources that are not real, you can create fake structure in your data.
    - This is more of a concern if the array has a small number of antennas such as the ACA, GMVA, EHT, or VLBA





52<sup>s</sup>.0

51°.4

50<sup>°</sup>.8

Self Calibration • 29 September 2023

24"

11<sup>h</sup>01<sup>m</sup>52<sup>s</sup>.8

-34°42'27"

### **SNR for self-calibration:**

- ••For phase only self-cal: Need to detect the target with a S/N > 3 in a solution time (solint) less than the time for significant phase variations for all baselines to a single antenna.
- Make an initial image, cleaning it conservatively
  - Measure rms in emission free region
  - $rms_{Ant} = rms_{im} \sqrt{N-3}$  where N is # of antennas
  - $rms_{self} = rms_{Ant} \sqrt{\frac{t_{total}}{t_{solint}}}$ • If  $\frac{s_{peak}}{rms_{self}} > 3$ :try phase only self-cal
- CAVEAT 1: If dominated by extended emission, estimate what the flux will be on the longer baselines (by plotting the uv-data) instead of the image
  - If the majority of the baselines in the array cannot "see" the majority of emission in the target field (i.e. emission is resolved out) at a S/N of about 3, the self-cal will fail in extreme cases (though bootstrapping from short to longer baselines is possible, but it can be tricky).
- CAVEAT 2: If severely dynamic range limited (poor uv-coverage), it can also be helpful to estimate the rms noise from uv-plots



### SNR for self calibration:

- For amplitude self-cal: Need to detect the target with a S/N > 10 with only the baselines to a single antenna in a solution time (solint) less than the time for significant amplitude variations. For 25 antennas, an antenna based S/N > 10 will lead to a 10% amplitude error.
  - Amplitude corrections are more subject to deficiencies in the model image. Check results carefully!
  - For example, if clean model is missing significant flux compared to uv-data, give uvrange for amplitude solution that excludes short baselines.



### **Outline of Self-Calibration Process:**

Repeat with deeper cleans and

shorter solution intervals

until phases no longer improve





- What is a good solint<sub>self</sub> to start with?
- Best practice is to start self-calibration gently with long solints, cleaning deeper with successive solution intervals as the data are corrected and model is improved
  - Best Starting solution interval is long, length of full observation of a single source for ALMA (~90 minutes) or ~1-2 hours for VLA; if observation length is longer, split into ~1 hour intervals
    - neet to use solint='inf' and combine='scan' in gaincal
  - This coarse solution interval will enable primarily direction-dependent errors to be corrected; i.e., antenna position errors which result in errors from phase referencing
    - The level of improvement can be surprising from such a coarse correction
  - Then solution interval should be shortened to length of 1 scan (solint='inf' and omit combine='scan')
    - Solints spanning multiple scans not generally helpful since those corrections are taken care of by phase referencing



- Then proceed to solution intervals shorter than a single scan
  - Most scans have similar length of time
  - Given S/N of data what subdivision of scan lengths would most likely be successful?
    - Generally dividing typical scan length by 2 or 3 repeatedly until solint='int' (single integration works well
    - For example, if a scan is 60s
      - 30s (30.25s)
      - ~15s (18.15s or 12.1s)
      - ~8s (or 6.05s)
      - int
      - Tip: When solution interval only has a few integrations, try to use an integer number of integrations in the solution interval
    - Beware gaincal and uneven division of scans
      - For example, if you have 45s scans, and do solint='20s', *gaincal* will divide the scan into 2x 20s solints and 1x 5s solint which will have a factor of 2 lower S/N



- How deep to clean in each solution interval?
- General rule is to clean conservatively at the beginning,
  - avoid artifacts and do not clean below their level
  - artifacts: symmetric or things that look like artificial patterns





- How deep to clean in each solution interval?
- General rule is to clean conservatively at the beginning,
  - avoid artifacts and do not clean below their level
  - artifacts: symmetric or things that look like artificial patterns
- Good idea to clean interactively at first to get a feel for self-calibration and model creation





- How deep to clean in each solution interval?
- General rule is to clean conservatively at the beginning,
  - avoid artifacts and do not clean below their level
  - artifacts: symmetric or things that look like artificial patterns
- Good idea to clean interactively at first to get a feel for self-calibration and model creation





- How deep to clean in each solution interval?
- General rule is to clean conservatively at the beginning,
  - avoid artifacts and do not clean below their level
  - artifacts: symmetric or things that look like artificial patterns
- Good idea to clean interactively at first to get a feel for self-calibration and model creation





### Where to Stop?

- As long as you are seeing bonafide improvments in each successive solution interval, it's safe to continue
  - Peaks are not decreasing (adding phase noise in)
  - RMS is not increasing (sign of adding noise or over flagging)
  - artifacts are not emerging inexplicably
  - beam is not changing significantly
- Best practice: After each round of selfcal, should make a 'post-solint' image, cleaned to exactly the same depth as the image for model creation
  - Evaluate basic metrics above
  - If metrics pass, try another, shorter solint
  - If metrics fail, previous solution interval should be your final one





### **Other tips and tricks**

- If you need more S/N for your solutions (gaincal is flagging them)
  - solint is too short
  - Use gaintype='T' (combines the orthogonal polarizations)
  - use combine='spw', combines data from all spws to create the gain solution (need to use spwmap parameter in applycal)
  - If high dynamic range (>~500) for ALMA, try using deconvolver='mtmfs',nterms=2; the spectral shape of the emission may limit dynamic range with deconvolver='hogbom'





### hif\_selfcal: Automated Self-Calibration



### Triggering criteria and inputs into hif\_selfcal task

- Will run on all single field targets
  - hif\_selfcal will no-op if it calculates selfcal will be of no benefit
    - Estimates the gaincal solution SNR on a per solution interval, per antenna basis and only proceeds with a solution interval if above a threshold (default=3)
- Tunable parameters:
  - field (string) field names to self-calibrate e.g., "HL\_Tau"; default = "" which will self-calibrate all sources
  - apply\_cal\_mode\_default (string) Apply mode to use for applycal task during self-calibration; default = 'calflag'; options: 'calflag' ,'calonly', 'calflagstrict'
  - amplitude\_selfcal (boolean) Attempt amplitude self-calibration following phase-only self-calibration; default = False
  - gaincal\_minsnr (float) Minimum S/N for a solution to not be flagged by gaincal; default = 2.0
  - minsnr\_to\_proceed (float) Minimum estimated self-cal S/N computed on a per solution interval, per per antenna basis, used to determine whether to attempt self-calibration for a source at a given solution interval; default = 3.0
  - delta\_beam\_thresh (float) Allowed fractional change in beam area for self-calibration to accept results of a solution interval; default = 0.05
  - See <u>https://science.nrao.edu/srdp/self-calibration-preview</u> for more details

- Designed to mimic an interactive self-calibration workflow
- Heuristics added/developed to automate the process

| Plan self-calibration          |                       |
|--------------------------------|-----------------------|
| Generate "pre" image,<br>model | If su<br>Adju<br>para |
| Solve for gains, apply         | Clea                  |
| Generate "post" image          | If ur                 |
| Evaluate success               | App<br>(or r          |

Pipeline-calibrated targets.ms files

f successful:

Adjust self-calibration parameters (solint, clean threshold, etc.)

f unsuccessful:

Apply last successful (or remove) calibration

- Designed to mimic an interactive self-calibration workflow
- Self-calibration plan is set prior to executing self-calibration. This includes determining:
  - Self-calibration solution intervals
    - Start with long intervals ("inf"), shorten until ('int')
  - Clean threshold for each interval
    - Start shallow, increase depth



- Designed to mimic an interactive self-calibration workflow
- Generate an image prior to calibration, save the model to use for calculating gain tables.
- Automated using:
  - Pre-defined clean thresholds
  - Auto-masking to define regions to clean

|   | _targets.ms mes                |                            |
|---|--------------------------------|----------------------------|
|   | Plan self-calibration          |                            |
|   | Generate "pre" image,<br>model | If succ<br>Adjust<br>param |
|   | Solve for gains, apply         | clean                      |
|   | Generate "post" image          | If unsu                    |
| , | Evaluate success               | Apply<br>(or ren           |

**Pipeline-calibrated** 

f successful:

Adjust self-calibration parameters (solint, clean threshold, etc.)

f unsuccessful:

Apply last successful (or remove) calibration

- Designed to mimic an interactive self-calibration workflow
- Metrics evaluated to determine the success of the calibration:
  - Pre-vs-post SNR
    - Evaluated outside the "post" clean mask
  - Pre-vs-post beam size
- Pre-vs-post "near-field" SNR calculated but not a decision point at this time
  - SNR with the noise calculate near to sources in the image



### Example of improvement in image quality



### hif\_selfcal output - weblog

#### List of Self-cal Targets

| Field                 | Band   | spw         | phasecenter                          | cell            | imsize     | Solints to Attempt                        | Success | Contline<br>applied | Line<br>applied |
|-----------------------|--------|-------------|--------------------------------------|-----------------|------------|-------------------------------------------|---------|---------------------|-----------------|
| IRS48<br>(rep.source) | Band 7 | 25,27,29,31 | ICRS 16:27:37.1797<br>-024.30.35.480 | ['0.052arcsec'] | [540, 540] | inf_EB, inf, 151.20s, 48.38s, 12.10s, int | *       | *                   | *               |

Self-calibration Target(s) Summary

#### Self-cal Target Details

IRS48 Band 7 back to top SUMMARY PER-SOLINT DETAILS Data Type Initial Final Brightness Dist. / Ratio Initial vs. Final Noise (Unmasked Pixels) 1.00 1.00 1.01 1.01 1.01 A Market Ma Market Mark Image Right Ascension (arcsec) Right Ascension (arcsec) Integrated Flux 1.035 193.219 ± 2.278 mJv 200.061 ± 2.276 mJv 482.931 6.318 SNR 3050.983 SNR (N.F.) 484.433 3053.878 6.304 RMS 0.182 0.172 mJy/bm 0.031 mJy/bm 0.183 RMS (N.F.) Beam 0.330"x0.258" -84.362 deg 0.331"x0.258" -84.180 deg 1.002 Success / Final Solint Yes / int Stop Reason None

| Solint                    | inf_EB                | inf                   | 151.20s               |  |
|---------------------------|-----------------------|-----------------------|-----------------------|--|
| Result                    | Pass<br>QA Plots      | Pass<br>QA Plots      | Pass<br>QA Plots      |  |
| Integrated Flux           | 194.114 ± 0.646 mJy   | 192.873 ± 0.252 mJy   | 191.989 ± 0.169 mJy   |  |
| Integrated Flux<br>Change | 1.008                 | 1.001                 | 0.991                 |  |
| Dynamic Range             | 633.264               | 1661.764              | 2479.466              |  |
| DR Improvement            | 1.327                 | 2.442                 | 1.292                 |  |
| Dynamic Range<br>(N.F.)   | 633.755               | 1664.341              | 2484.522              |  |
| DR Improvement<br>(N.F.)  | 1.327                 | 2.442                 | 1.292                 |  |
| RMS                       | 0.134 mJy/bm          | 0.054 mJy/bm          | 0.037 mJy/bm          |  |
| RMS Improvement           | 1.304                 | 2.331                 | 1.262                 |  |
| RMS (N.F.)                | 0.134 mJy/bm          | 0.054 mJy/bm          | 0.037 mJy/bm          |  |
| RMS Improvement<br>(N.F.) | 1.304                 | 2.331                 | 1.262                 |  |
| Beam Pre                  | 0.330"x0.258" -84.362 | 0.330"x0.258" -84.368 | 0.330"x0.258" -84.354 |  |
| Beam post                 | deg                   | deg                   | deg                   |  |
| Ratio of Beam Area        |                       |                       | 1.000                 |  |
| Clean Threshold           | 4.278 mJy/bm          | 1.067 mJy/bm          | 0.457 mJy/bm          |  |

### Features in current release vs future releases

In the recent Pipeline release:

- Self-calibration of single-pointing ALMA (and VLA) datasets
  - Multi-source EBs work
  - I.e. no mosaics

In the Standalone development branch:

- Near-field heuristics with improved near-field mask generation
- Improved heuristics for "long baseline" datasets
- Mosaics work
- Available here soon (when stable): <u>https://github.com/jjtobin/auto\_selfcal.git</u>
- Or here now (development): <u>https://github.com/psheehan/auto\_selfcal.git</u>

### Summary

- Self-calibration is not magic, but rather a well-understood process to improve (sometimes drastically) the quality of data from interferometers
  - Care and caution is required, but is not tremendously difficult
  - Make sure your model is a good representation of the data
  - Make sure the data you put into solver, is a good match to the model
  - If you are lacking a little in S/N try one of the "S/N increase techniques"
  - If you really don't have enough S/N don't keep the dodgy results!
- For more examples, advice, and explanatory details see:
  - Advanced Gain Calibration Techniques in Radio Interferometry (https://arxiv.org/abs/1805.05266) Crystal Brogan, Todd Hunter, Ed Fomalont
- Automated self calibration is now a reality for continuum data
  - CASA-integrated pipeline version (based on stable version)
    - <u>https://science.nrao.edu/srdp/self-calibration-preview</u>
  - Also available via ALMA reimaging service within NRAO archive (<u>https://data.nrao.edu</u>)



#### Self-Cal Resources

#### • ALMA Self-cal Tutorial

- <u>https://casaguides.nrao.edu/index.php?title=First\_Look\_at\_Self\_Calibration\_CA\_SA\_6</u>
- VLA Self-cal Tutorial
  - <u>https://casaguides.nrao.edu/index.php?title=VLA\_Self-calibration\_Tutorial-CAS</u> <u>A6.4.1</u>
- Self Calibration Pipeline Preview
  - <u>https://science.nrao.edu/srdp/self-calibration-preview</u>



### Acknowledgements

I referenced the presentation of Loreto Barcos-Muñoz, Amanda Kepley, and Crystal Brogan from the previous ALMA Ambassadors Workshop

I made use of figures from Rick Perley's excellent talk: Fundamental Radio Astronomy II from the Synthesis Imaging Workshop 2023

Many thanks to John Tobin, Dominic Ludovici and Michael Sánchez, from who I borrowed extensive material.





