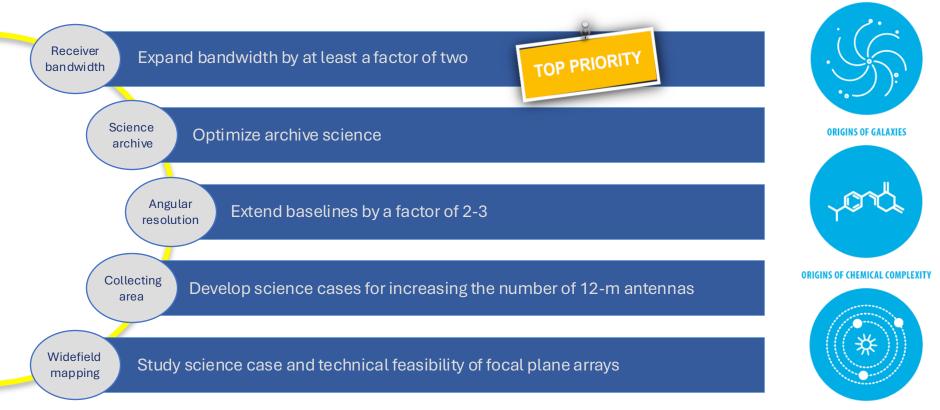


Intro to the ALMA Wideband Sensitivity Upgrade (WSU) Jennifer Donovan Meyer (NRAO/NA ALMA Development Team)



National Radio Astronomy Observatory

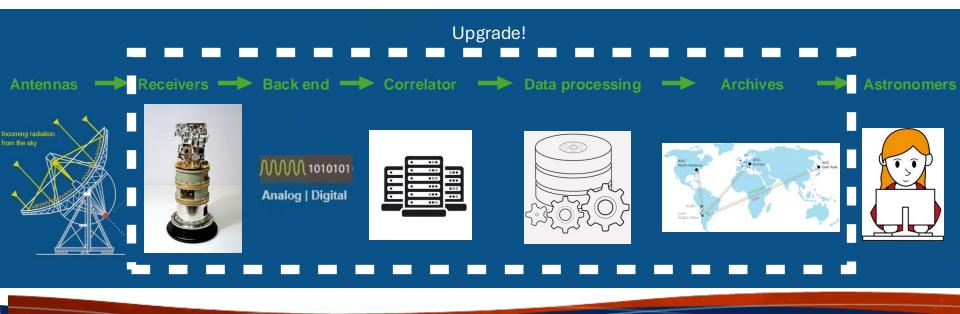
WSU Special Session "New perspectives on protoplanetary disks in the era of JWST and the ALMA WSU" (AAS 245: January 14, 2025)

ALMA 2030 Development Priorities

Based on ALMA Development Roadmap (Carpenter et al. 2018, arXiv 1902.02856)

ORIGINS OF PLANETS

Progress in the three fundamental science drivers require increased bandwidth and sensitivity to keep ALMA at forefront of scientific discovery



Wideband Sensitivity Upgrade (WSU): Top Priority of the ALMA 2030 Roadmap

- Upgrade of the bandwidth and throughput of the ALMA system
 - upgraded receivers with increased bandwidth and improved receiver temperatures (and revamp of entire signal chain)
 - more powerful correlator

3

increased data reduction capacity

ALMA Wideband Sensitivity Upgrade

New/upgraded components per WSU shown in blue. **Operations Support Facility Front End** at 3,000m **Back End** Array **IF Switches & Operations Anti-aliasing** filters **Building at** Fiber 5,000m **Digitizers** 2nd Generation ጺ Correlator in new OSF New **Digital** Correlator Roon Antenna Signal Processing **Digital** Receivers Transmission **System** CONTROL, TelCal, **Development Roadmap Priority Goal:** Scheduling, OT, Archive, Expand system bandwidth by at least **Pipeline** 2x with improved sensitivity

Completed Preliminary Design Reviews

ATAC Correlator OSF Correlator Room Data Transmission System Wideband IF Processor (Digitizer)

Completed Conceptual Design Reviews

Total Power GPU Spectrometer

Receivers in production

Band 2 (67-116 GHz)

Receivers in development

Band 6v2 (209-281 GHz); Band 8 (385-500 GHz)

- · First wideband receivers in construction or prototypes in development
 - Band 2 (IF=2-18 GHz), Band 6v2 (IF=4-18 GHz), Band 8v2 (IF=4-18 GHz)
 - · Remaining bands are under study for future upgrades
- Digital Signal Chain
 - Digitizer prototype in development: 4x current bandwidth, 6% sensitivity improvement
 - DTS prototype in development with 10x higher capacity
- Advanced Technology ALMA Correlator (ATAC)
 - Prototype testing underway with initial 4x BW ingest and 2x BW correlation
 - 1.2 million spectral channels (and flexible online averaging) available
 - · Flexible subarrays to process 12-m and 7-m arrays concurrently
 - 6-bit correlation for 13% improvement in sensitivity compared to BLC
- Total Power GPU Spectrometer
- OSF Correlator Room

AAS 245 – New perspectives on protoplanetary disks in the era of JWST and ALMA WSU

Current WSU Hardware Status

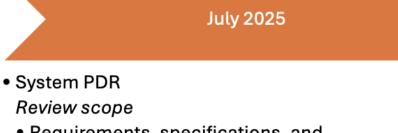
5

Proposed Stages of WSU Implementation *

		Initial WSU System (IWS)
WSU program under planning and review; meets 2030 Development		 Prepared for the first Cycle of WSU Scientific Observations offered to the community (target Cycle 16, Oct 2029) At least 36 antennas connected to WSU Signal Chain and ATAC, OCRO, Band 2, AOS to OSF Optical Fibers, necessary updates to software and infrastructure
Roadmap requirements		Minimum WSU System (MWS)
	_	 IWS, Band 6v2, Band 8v2, TPGS, necessary updates to software and infrastructure

* Subject to review outcomes/ALMA Board approval

Proposed Stages of WSU Implementation *


F	Initial WSU System (IWS)						
WSU program under planning and review; meets 2030 Development	 Prepared for the first Cycle of WSU Scientific Observations offered to the community (target Cycle 16, Oct 2029) At least 36 antennas connected to WSU Signal Chain and ATAC, OCRO, Band 2, AC to OSF Optical Fibers, necessary updates to software and infrastructure 						
Roadmap requirements	Minimum WSU System (MWS)						
	 IWS, Band 6v2, Band 8v2, TPGS, necessary updates to software and infrastructure 						

Follow-on WSU initiatives to meet full vision of the	Goal WSU System (GWS)						
	 MWS, Band 7v2, ATAC upgrade to process 4x bandwidth, necessary updates to software and infrastructure 						
2030 Development	Full WSU System (FWS)						
Roadmap; post-2030, subject to	 Allows the implementation of additional enhancements to complete the WSU System through the ALMA Development Program 						
funding availability	 Band 1v2, Band 4+5, Band 9v2, Band10v2, necessary updates to software and infrastructure 						
	* Subject to review outcomes/ALMA Board approval						

7

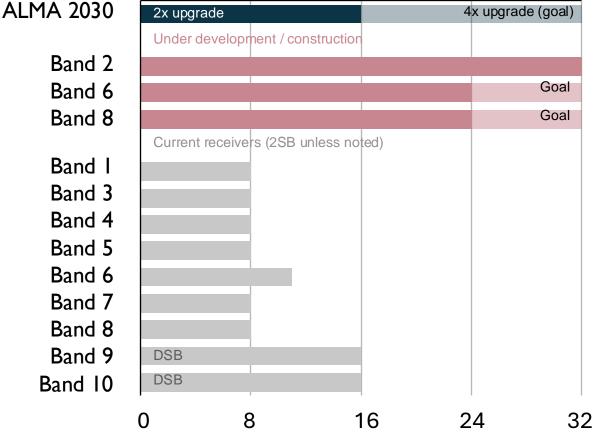
WSU 2025 Major Program Reviews

- Requirements, specifications, and interfaces
- System Design Description (HW, SW, SciOps)
- Design compliance matrix (by design)
- Assembly, Integration, Verification, and Commissioning (AIVC) plans and strategy
- Transition to WSU Operations plans, including Array Configuration Plan
- Project Management Plan (WBS, schedule, organization, risk management)
- Product Assurance Plan, Safety Plan

- Cost Review
 Review scope
 - Cost estimation methodology and standards

September 2025

- Cost consistent with the WSU Work Breakdown Structure
- Cost estimate maturity

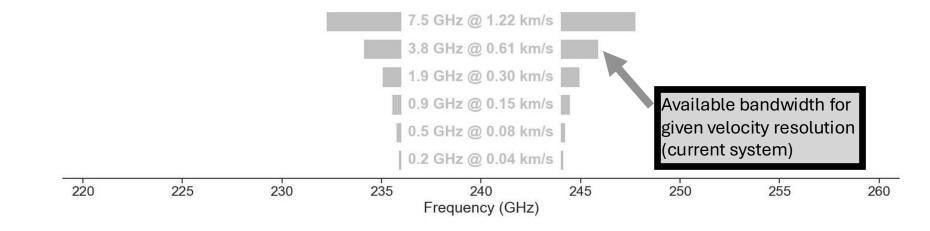


WSU Receiver and Correlated Bandwidth

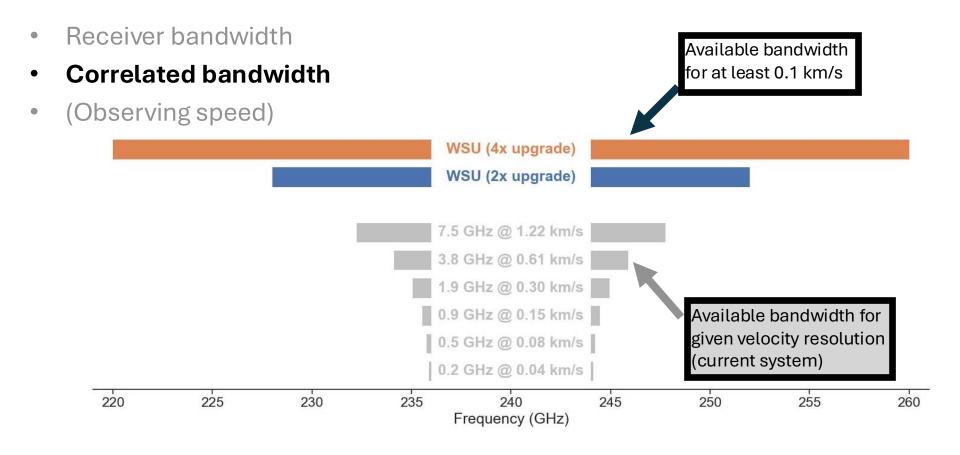
Receiver bandwidth

- Correlated bandwidth
- (Observing speed)

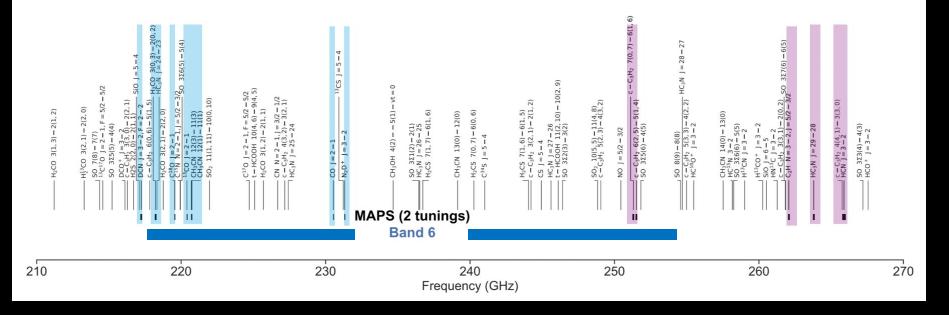
Factor of 2-4 increase in the available IF bandwidth.



Available instantaneous bandwidth per polarization (GHz)


WSU Receiver and Correlated Bandwidth

- Receiver bandwidth
- Correlated bandwidth
- (Observing speed)



WSU Receiver and Correlated Bandwidth

Disk chemical inventories are biased due to bandwidth limitations

Carpenter+ 2022

A huge increase in "Spectral Grasp" => science from a single observation/tuning

in

The ALMA WSU will benefit <u>all</u> observations

Enhanced Capability	WSU Improvement for 2x BW Correlation (16 GHz per pol)	Future Improvement with 4x BW	
Receiver bandwidth increase	 2-4x in instantaneous bandwidth (as receiver bands are upgraded) Fewer tunings to cover a receiver band 		
Correlated Bandwidth increase	 2x for low spectral resolution Up to 4x (Band 10) and 68x (Band 1) for 0.1 km/s spectral resolution No more trade-offs between resolution and bandwidth 	Up to Additional 2x	
Spectral scan <u>speed</u> increase	 2x for low spectral resolution Up to 4x (Band 10) and 64x (Band 1) for 0.1 km/s spectral resolution Improved spectral scan speed 	Up to Additional 2x	
Spectral line Imaging speed	 ~2.2x from improved receiver noise temperatures and digital efficiency* Improved line imaging speed 		
Continuum Imaging <u>speed</u>	 ≥ 4.8x from correlated bandwidth increase, improved receiver noise temperatures and digital efficiency* Improved continuum imaging speed 	Up to Additional 2x	
Ultra-high spectral resolution	Access to 0.01 km/s at <u>all</u> ALMA frequencies for the first time		

* Increased bit-depth in digitization and correlation stages will yield ~20% improvement in sensitivity, even for receiver bands that have not yet been upgraded

> Equivalent to adding 1000 additional hours of observing time per cycle

Want to learn more?

- At AAS:
- WSU Community Chats at NRAO Exhibit in the Exhibit Hall
 - Tuesday and Wednesday, 1.30 -2pm
- Poster Session 206 (flash slides next!)
- WSU Details in ALMA White Paper
- ALMA Memo 621 (arXiv:2211.00195)
- Keep up with us at
- WSU page
 - go.nrao.edu/ALMA-WSU
- ALMA Observatory WSU project page
 - almaobservatory.org/en/scientists/a lma-2030-wsu

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

15 AAS 245 – New perspectives on protoplanetary disks in the era of JWST and ALMA WSU

Poster 206.02

Expanding possibilities of protoplanetary disk characterization with **HITRAN2024**

Robert J. Hargreaves, Iouli E. Gordon, Vladimir Makhnev, Thibault Bertin, Laurence S. Rothman

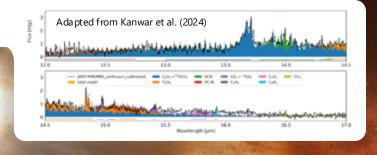
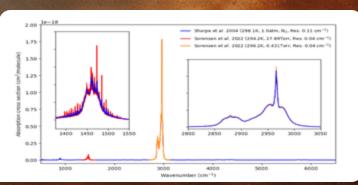
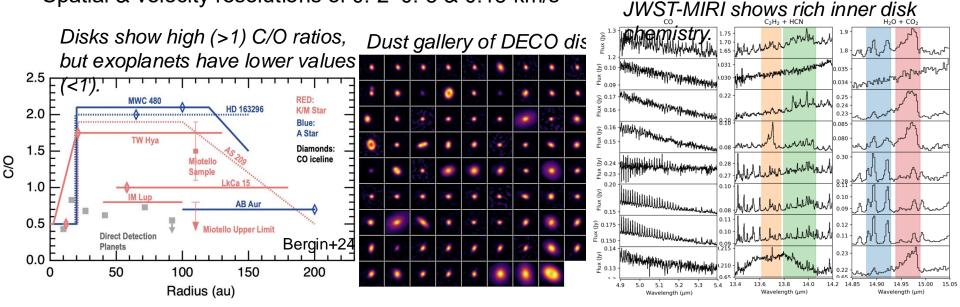

Numerous molecules detected in protoplanetary disks with JWST

	Table 1 - Line-by-line portion of HITRAN2024																
H ₂ O	(7)	NO	(3)	нсі	(4)	N ₂	(2)	COF ₂	(2)	NO ⁺	(1)		(1)	SO	(1)	CH ₃	(1)
CO2	(12)	SO ₂	(4)	HBr	(4)	HCN	(3)	SF ₆	(1)	HOBr	(2)	HC ₃ N	(1)	CH ₃ F	(<mark>2</mark>)	S ₂	(1)
O ₃	(5)	NO ₂	(3)	ні	(2)	CH₃CI	(2)	H ₂ S	(3)	C ₂ H ₄	(2)	H ₂	(2)	GeH ₄	(4)	COFC	1 (2)
N ₂ O	(5)	NH ₃	(3)	CIO	(2)	H ₂ O ₂	(1)	нсоон	I (<mark>2</mark>)	сн₃он	(1)	cs	(4)	CS ₂	(4)	HONO) (1)
co (6+3*)	HNO	3 (2)	ocs	(6)	C ₂ H ₂	(3)	HO ₂	(1)	CH₃Br	(2)	SO3	(1)	CH ₃ I	(1)	CINO	2 (2)
CH₄	(4)	он	(3)	H ₂ CO	(3)	C_2H_6	(3)	0	(1)	CH ₃ CN	(1)	C_2N_2	(1)	NF_3	(1)	K	• ¦
02	(3)	HF	(2)	носі	(2)	PH ₃	(1)		(2)	CF ₄	(1)	COCI	2 (2)	H ₃ +	(1)		H-TRAN
Molecule	e that will	he undated	/extender	d with respe	ct to HI		are in ho	d text									K


Molecules that will be updated/extended with respect to HITRAN2020 are in **bold text** New molecules or additional isotopologues for existing molecules are highlighted in red

Many absorption cross-sections to be added for **HITRAN2024**, in addition to **+300** already included (inc. multiple hydrocarbons)

Line-by-line lists expanding for **HITRAN2024** to **61** molecules



ENTER FOR

Early Results from the Disk-Exoplanet C/Onnection (DECO) Large Program + Charles J. Law, Ilse Cleeves, & the DECO Team – Poster 206.04

- DECO (PI: I. Cleeves) is an ALMA Cycle 9 LP
- Main lines are CO isotopologues, C₂H, & N₂H⁺
- Spatial & velocity resolutions of 0."2-0."5 & 0.15 km/s

DECO will measure the C/O ratio in a statistical sample of 80 "typical" protoplanetary disks to compare with existing/forthcoming exoplanet measurements.

Bonus lines: H₂CO, CS, ¹³CS, SC

 H_2CS , HCN, $c-C_3H_2$, DCN, N_2D^+ ,

CH₃OH....

Right: The parameters found

from the results of Mendoza

Bottom left/right: TIPSY

simulations of dust orbitals

Free Fallin': Mapping the Trajectory of Infalling Mass around Protostars

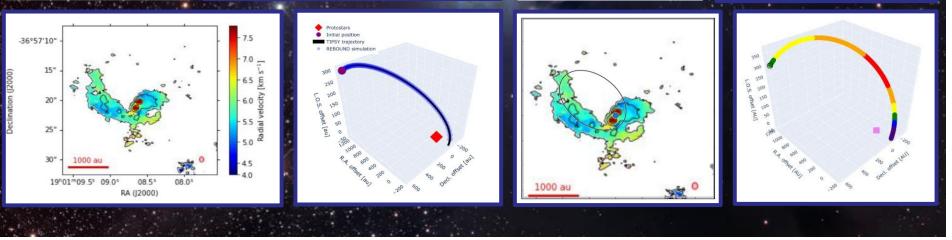
¹University of Michigan - Ann Arbor; ²European Southern Observatory

Right: I

velocity

Bottom

singular



TIPSY Simulation Results

1.0					
	Quantity	S CrA			
	Stellar mass $[M_{\odot}]$	2			
	Distance [pc]	160			
	Specific energy [km ² / s ²]	-1.15±0.10			
	Specific angular momentum [AU km / s]	791±218			
	Infall time [yr]	8301±1358			

Our Simulation Results

Legend for radial		Color	Radial Velocity [km / s]
of dust orbital		Red	>4.5
		Orange	>5.0
left/right: Model of		Green	>5.5
r dust orbital		Blue	>6.0
		Indigo	>6.5

