PSR J1745-2900

The Galactic Center Pulsar, SGR J1745-29

Geoffrey C. Bower (UC Berkeley)

Revealing a high magnetic field around the supermassive black hole at the centre of the Galaxy

R. P. Eatough¹, H. Falcke^{2,3,1}, R. Karuppusamy¹, K. J. Lee¹, D. J. Champion¹, E. F. Keane⁴,

G. Desvignes¹, D. H. F. M. Schnitzeler¹, L. G. Spitler¹, M. Kramer^{1,4}, B. Klein^{5,1}, C. Bassa⁴,

G. C. Bower⁶, A. Brunthaler¹, I. Cognard⁷, A. T. Deller³, P. B. Demorest⁸, P. C. C. Freire¹,

A. Kraus¹, A. G. Lyne⁴, A. Noutsos¹, B. Stappers⁴ & N. Wex¹

The Angular Broadening of the Galactic Center Pulsar SGR 1745-29: A New Constraint on the Scattering Medium

Geoffrey C. Bower¹, Adam Deller², Paul Demorest³, Andreas Brunthaler⁴, Ralph Eatough⁴, Heino Falcke^{5,2,4}, Michael Kramer⁴ K.J. Lee⁴, Laura Spitler⁴

Pulse Broadening Measurements from the Galactic Center Pulsar J1745–2900

L. G. Spitler,¹ K. J. Lee,¹ R. P. Eatough,¹ M. Kramer,^{1,2} R. Karuppusamy,¹ C. G. Bassa,² I. Cognard,³ G. Desvignes,¹ A. G. Lyne,² B. W. Stappers,² G. C. Bower,⁴ J. M. Cordes,⁵ D. J. Champion,¹ & H. Falcke,^{1,6,7}

Using Pulsars to Measure Spacetime Around Sgr A*

Liu et al 2012

Galactic Center Magnetar Discovery

0

Radio Detection

- period
 P = 3.76354676(2) s
- period derivative (spindown) P/Pdot = 6.82(3) 10⁻¹² B ~ 10¹⁴ G
- Spin-down age ~ 9000 yrs
- Dispersion
 DM = 1778 +/- 3 cm⁻³ pc
- Flux ~0.2 mJy
- spectrum ~flat
- Only 4 radio magnetars known – chance alignment is 10⁻⁸

Eatough et al. 2013 Shannon and Johnston 2013

normalised flux

Dispersion in the Galactic Center

Rotation Measure

 $RM = -66960 + / -50 rad m^{-2}$

Galactic RM of diffuse gas

Law et al. (2011)

RM of Galactic Center Sources

Law et al. (2011)

RM and DM from hot gas

- Inferred densities at scales of 0.06, 0.15 and 40 pc roughly follow r⁻¹ law.
- DM ~ $n_e r ~ 10^2 cm^{-3} pc$
- RM ~ B n_e r
 ⇒ B ∝ RM ~ 8 mG
- Equipartition: B ~ 2.5 mG
- ⇒ Sgr A* accretes from a highly magnetized hot gas

Based on Baganoff et al. (2003), Muno et al. (2004)

Angular Broadening of the Pulsar

Individual Pulses are Highly Variable

Temporal Scattering

A New Distance for the GC Scattering Screen

Bower et al. 2013

Reid, Brunthaler, et al

Does a Scattering Screen at Large Distances Make Sense?

- NGC 6334B & Cyg X-3 have similar scattering sizes and non-local scattering screens
- 50 pc diameter screen associated with HII regions or GMC surfaces can provide the scattering
- Missing extragalactic background sources?
- Apparent peak of OH/IR masers around Sgr A*?
- Patchiness?
 - Scale ~5' from G359.87+0.18

scatter size [mas]

Where are the GC pulsars?

Astrometry

EC (J2000)

- 4 astrometric detections
- Accuracy ~0.3 mas/epoch
- Velocity accuracy @ GC ~100 km/s [2 months data]
 - \rightarrow ~10 km/s in 1 year
- Where is it going? Where did it come from?
 - Characteristic velocity ~390 km/s
 - Escape velocity ~600 km/s
 - T_SgrA* < 1000y</p>
 - Acceleration ~ 1 km/s/y

PSR J1745-2900

Conclusions

First true GC pulsar discovered

- Highest DM, RM, SM of any known pulsar
- X-ray absorption consistent with GC location
- Too unstable for precision timing tests
- Important probe of the Sgr A* environment
 - Sgr A* accretes from hot gas with high and ordered B-fields
 - Motion of the pulsar could provide length scales for ISM structures
- Scattering must originate at large distances
 - Resolves long-standing mystery --- but creates new ones
- Proper motion to come ... (tracing back to origin?)
 - Sgr A* orbit ~10³ yrs likely too long for precision GR tests
- Where are the other GC pulsars?
 - Can easily detect ordinary pulsars at few GHz
 - Can detect MSPs at >10 GHz