Gamma-ray bubbles, cocoons, and... jets?!?

Douglas Finkbeiner - Harvard CfA
Meng Su - Harvard -> MIT

IAU 303 Santa Fe
October 4, 2013
Background:

Based on analysis of 1.6 years of *Fermi* data, we claimed in 2010 that there were “bubble” structures spanning $|b| < 50$ deg and $|l| < 20$ deg. (Su, Slatyer, Finkbeiner, arXiv:1005.5480)
Background:

Based on analysis of 1.6 years of Fermi data, we claimed in 2010 that there were “bubble” structures spanning $\sim |b| < 50$ deg and $|l| < 20$ deg. (Su, Slatyer, Finkbeiner, arXiv:1005.5480)

By last year, with 3+ years of data and Pass 7 processing, we could see the bubble structures clearly and began to look for substructure. (Su & Finkbeiner, arXiv:1205.5852)
Fermi bubbles processing steps:

Point sources / diffuse model / stretch
Make maps in energy bins.
Model each map as a linear combination of 4 templates.
Maximize Poisson likelihood of observations given model.
Plot template coefficients as a function of energy.
(Su, Slatyer, Finkbeiner 2010, 1005.5480)
Could be IC gammas from e^+e^- scattering ISRF. Need a fairly hard electron spectrum.

(Su, Slatyer, Finkbeiner 2010, 1005.5480)
Compatible with synchrotron explanation for the WMAP haze (Finkbeiner, astro-ph/0311547)

(Su, Slatyer, Finkbeiner 2010, 1005.5480)
Origin of the Fermi Bubbles

- Crocker & Aharonian (1008.2658): *The Fermi Bubbles: Giant, Multi-Billion-Year-Old Reservoirs of Galactic Center Cosmic Rays*

- Dogiel et al. (1109.6087): *Fermi Bubbles as a Result of Star Capture in the Galactic Center*

- Guo & Mathews; Guo et al. (1110.0834): AGN activity

- Carretti et al. (1301.0512): 2.3 GHz S-PASS radio polarization survey indicates star formation
Crocker & Aharonian (1008.2658)
Origin of the Fermi Bubbles

- Crocker & Aharonian (1008.2658): *The Fermi Bubbles: Giant, Multi-Billion-Year-Old Reservoirs of Galactic Center Cosmic Rays*

- Dogiel et al. (1109.6087): *Fermi Bubbles as a Result of Star Capture in the Galactic Center*

- Guo & Mathews; Guo et al. (1110.0834): AGN activity

- Carretti et al. (1301.0512): 2.3 GHz S-PASS radio polarization survey indicates star formation
FIG. 2: The spectrum of gamma-ray emission from Fermi bubble in case of multi-shock acceleration. Data points are taken from [1].

Dogiel et al. (1109.6087)
Origin of the Fermi Bubbles

- Crocker & Aharonian (1008.2658): *The Fermi Bubbles: Giant, Multi-Billion-Year-Old Reservoirs of Galactic Center Cosmic Rays*

- Dogiel et al. (1109.6087): *Fermi Bubbles as a Result of Star Capture in the Galactic Center*

- Guo & Mathews; Guo et al. (1110.0834): AGN activity

- Carretti et al. (1301.0512): 2.3 GHz S-PASS radio polarization survey indicates star formation
Fig. 2. — Central slices (16 × 15 kpc) of CR energy density in logarithmic scale in runs V0, V0d5, V1, V3, V10, and V30 at $t = t_{\text{Fermi}}$, which is shown at the top of each panel for the corresponding run. Horizontal and vertical axes refer to R and z respectively, labeled in kpc. The stabilizing effect of viscosity on bubble edges can be clearly seen here as viscosity increases from panel to panel, and the Kelvin-Helmholtz and Rayleigh-Taylor instabilities are fully suppressed when $\mu_{\text{visc}} \gtrsim 3 \text{ g cm}^{-1} \text{ s}^{-1}$.
Guo et al. (1110.0834)
Origin of the Fermi Bubbles

- Crocker & Aharonian (1008.2658): The Fermi Bubbles: Giant, Multi-Billion-Year-Old Reservoirs of Galactic Center Cosmic Rays

- Dogiel et al. (1109.6087): Fermi Bubbles as a Result of Star Capture in the Galactic Center

- Guo & Mathews; Guo et al. (1110.0834): AGN activity

- Carretti et al. (1301.0512): 2.3 GHz S-PASS radio polarization survey indicates star formation
Origin of the Fermi Bubbles

... and many other papers...
Origin of the Fermi Bubbles

• Last year, Meng Su and I looked for substructure in the Bubbles that might give a clue about their origins.
Simple templates...

Our first paper used a uniform intensity template for the Fermi bubbles.

This was correct to zeroth order.

Su & Finkbeiner (2010)
Can see the structures simply by subtracting the LAT team’s diffuse model:

Data minus Fermi diffuse model in 4 energy bins. (1.6 yr data)

Su & Finkbeiner (2010)
We always wondered why the left (east) part of the southern bubble was brighter, and if this was significant.
So we made another template...

- Dust
- Disk
- Bubbles
- Cocoon
“Cocoon” feature on east (left) side of southern bubble

Su & Finkbeiner (2012)
The cocoon is detected as a distinct feature in the multilinear regression at 12 sigma.

The spectrum is consistent with flat (in $E^2 \, dN/dE$)

$L \sim 2 \times 10^{36}$ erg/sec for 1-100 GeV

Su & Finkbeiner (2012)
It is tempting to imagine that this “cocoon” contains a jet, but the jet must be very faint.

Let’s look more carefully at 90 arcmin maps, binning counts from 0.8 to 3.2 GeV, after subtracting the usual templates (but not the cocoon)...
So we made *yet* another template...
Su & Finkbeiner (2012)
Leaving out dust-correlated π^0 emission
Fit is done for $|b| > 20^\circ$
Leaving out dust-correlated π^0 emission
Fit is done for $|b| > 20^\circ$

Now do this in each energy bin...

Su & Finkbeiner (2012)
Su & Finkbeiner (2012)
$E^2 \, dN/dE \sim E^{0.2}$

Su & Finkbeiner (2012)
Significance (over 0.3-300 GeV):

• North jet: 3.1 sigma
• South jet: 4.1 sigma
• Jointly: 5.1 sigma
• Cocoon: 12 sigma
Conclusions (so far)

- With significance levels like these, why is this not “a discovery?”
- We are calling this “evidence for” jets. We would like to see these confirmed at another wavelength.
- Future all-sky x-ray data (eRosita) and microwave data (Planck) may clarify the situation.
- See arXiv:1205.5852
Hot off the press (4.5-5.0 years of data, thanks to Meng Su)

• Many of these predict that the Fermi Bubble spectrum is ~ flat up to $E >> 100$ GeV.

• But the energy spectrum falls above 100 GeV.
Bubbles, cocoon are obvious at 1-5 GeV
(extra point sources have appeared)
Also at 5-50 GeV...
4.5 yr: Jet fluctuated up in lowest bin, down in next bin...
3 year data

Su & Finkbeiner (2012)
Now with 5 years of data we have enough photons to use finer E bins...
Because the π^0 emission is the largest component of our fit, we are especially concerned about our template. We try various assumptions for the π^0 template:

- SFD (1998) dust
- Fermi diffuse model (P6 -- no bubbles included)
- Planck 857 GHz
- Planck dust

All give similar results
π^0 template: Fermi diffuse model
π⁰ template: SFD (1998) dust map
\(\pi^0 \) template: Planck 857 GHz
\(\pi^0 \) template: Planck thermal dust
Regardless of template choice, the Fermi bubble spectrum falls “off a cliff” between 100 and 200 GeV.
We can also use our 5 years of photons to split the Fermi Bubbles into latitude bins and see how the spectrum varies...

Hooper & Slatyer (2013)
From 10-40 deg, spectrum at E > 5 GeV is the same

Su & Finkbeiner (2014)
Not sure we believe variation at low E...
This variation drove Hooper & Slatyer (1302.6589) to include a "dark matter" (NFW-like) template in the fit. (building on previous work with Tim Linden)
So we did the same:
Outstanding questions

- What does it mean that the spectrum falls so rapidly at high energy?
- Is the gamma-ray edge a shock or a contact discontinuity?
- Do we believe the low energy fall off yet? Why is it latitude dependent?
- Are the “jets” real?
- What is the ~ few GeV ~ NFW bump?
- What additional data would shed light on these questions?

Need more data!
Thanks

• Meng Su (analysis)

• Fermi Team

• Jerry Ostriker, Roland Crocker, Mateusz Ruszkowski, Tim Linden (helpful conversations)

• IAU SOC (for inviting me to speak)