Planning ALMA Observations Atacama Large mm/sub-mm Array

Al Wootten North American ALMA Science Center

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

The ALMA Science Portal

https://almascience.nrao.edu

Hub for project-wide material.

- Observing Tool
- Sensitivity Calculator
- Proposer's Guide
- Technical Handbook
- Science Verification Data
- CASA & Simulations
- Tutorials
- Helpdesk

ALMA 属

Registration required to propose for PIs and cols.

ALMA Basics

Global partnership (shared cost ~1.3 billion 2006\$):

North America (US, Canada, Taiwan) Europe (ESO) East Asia (Japan, Taiwan) In collaboration with Chile

- Unique high, dry site: 5000m (16,500 ft) in Chilean Atacama desert
- At least 66 submillimeter/millimeter telescopes: 12-m Array – 50 x 12-m Atacama Compact Array (ACA) - 12x7-m, 4x12-m
- On budget and on time for completion in 2013

ALMA Basics

- Global partnership (shared cost ~1.3 billion): North America (US, Canada, Taiwan) Europe (ESO) East Asia (Japan, Taiwan) In collaboration with Chile
- Unique high, dry site:
 5000m (16,500 ft) in Chilean Atacama desert
- At least 66 submillimeter/millimeter telescopes: 12-m Array – 50 x 12-m Atacama Compact Array (ACA) - 12x7-m, 4x12-m
- On budget and on time for completion in 2013

Full Science Capabilities

10-100× better sensitivity and resolution than current mm arrays.

- Baselines to ~15 km (0.015" at 300 GHz) in "zoom lens" configurations
- Sensitive, precision imaging 84 to 950 GHz (3 mm to 315 µm) employing state-of-theart low-noise, wide-band SIS receivers (8 GHz bandwidth per polarization)
- Flexible correlator with high spectral resolution at wide bandwidth
- Full polarization capabilities

NRAC

• Development Program: Future upgrades (B1,B2, B5, ?)

Collecting Area & Baselines

Circles Show Collecting Area (sensitivity)

Captions give # of antennas and # of baselines (fidelity)

Current Status

- Cycle 0 observing began 30 Sep '11.
- Cycle 1 call for proposals out (12 July)
- Data delivered to PIs.
- Commissioning ongoing.
- 31+ antennas at high site.
- Correlators (ACA and main) working.
- All antennas: B3, 6, 7, and 9 receivers.
- Science verification ongoing, data publicly available.

Science Verification Data

- ALMA data released for: BR1202 (HIGH REDSHIFT QUASAR) THE ANTENNAE GALAXIES* NGC 3256* M100
 SGR A-STAR
 ORI B6 SPECTRAL SCAN
 IRAS 16923 (B9*)
 TW HYDRA*
- Calibrated & uncalibrated data, images, periodically augmented
- download from ALMA Science Portal <u>http://almascience.org/</u>
- * CASA guide available at <u>http://casaguides.nrao.edu</u>

HCO+ J=4-3 in TW Hya

CO J=3-2 in the Antennae

ALMA Images Nearby Galaxies

• Science verification imaging of the Antennae Galaxies

ALMA Images Debris Disks

• PI Boley (U. Florida) Data on Fomalhaut Debris Disk

ALMA Cycle 1

- Proposals due July 12
 OBSERVING PERIOD COVERS ~10 MONTHS
- 32 12-m Antennas ("Twelve Meter Array")
- ACA: Nine 7-m Antennas, Two "Total Power" 12-m Antennas ACA OBSERVATIONS MAY BE REQUESTED TO SUPPLEMENT 12-M WITH "SHORT SPACINGS"
- Maximum baselines 160-m to 1-km
- Receiver Bands 3, 6, 7, and 9
- Mosaics up to 150 pointings
- About 800 hours of 12-m array time available

Practical Introduction

- Video Tutorials and Quickstart Guides
- https://almascience.nrao.edu/call-for-proposals/observing-tool/video-tutorials

	Atacama Large Millimeter/submillimeter Array In search of our Cosmic Origins ESO NRAO About ALMA ALMA Science You are here: Home > Call for Proposals > Observing Tool > OT V OT Video Tutorials The OT video tutorials provide an audio-visual demonstration	Ideo Tutorials
	I. A brief verview of the OT	II. Creating proposal in 10 easy steps
2	III. The sectral	IV. The patial field etup

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

Science Goal (Cycle I)

- One correlator + front end setup in one ALMA band
 SPECTRAL WINDOWS, REST FREQUENCY, POLARIZATION, LINE VS. CONTINUUM
- Subject to one set of control parameters SPATIAL RESOLUTION, LARGEST ANGULAR SCALE, SENSITIVITY, DYNAMIC RANGE
- Using one mapping strategy MOSAIC, OFFSETS, SINGLE FIELDS
- Using one calibration strategy SYSTEM OR USER DEFINED
- Applied to Sky Targets within 15° UP TO 15 PER SCIENCE GOAL OR 150 FIELDS PER MOSAIC, UP TO 5 DIFFERENT VELOCITIES

Science Goal (Cycle I)

NRAC

- Fundamental unit (below proposal) in the ALMA OT
- Five Science Goals allowed per proposal in Cycle 1

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

Spectral Setup: Receiver

• Four receiver "bands," set spectral coverage OBSERVING FREQUENCY ALSO AFFECTS RESOLUTION, PRIMARY BEAM

Band	Frequency (GHz)	Primary beam (arcsec)	Angular Resolution (arcsec)	Continuum Sensitivity (mJy min ^{1/2})
3	84 - 116	62	0.6 - 4.1	0.09
6	211 - 275	25	0.3 - 1.7	0.14
7	275 - 373	19	0.2 - 1.2	0.25
9	602 - 720	9	0.1 - 0.6	2.5

Figure 1. The numbers indicate the percentage of time when the pwv is below 1 mm as a function of Local Sidereal Time (LST) and week number beginning with January 1, 2013. Red indicates times with very little time available at low PWV and therefore less suitable for high frequency observing, while blue indicates times with a large fraction of time available at low PWV. The data were obtained with the APEX radiometer in the years 2007-2011 (5 years). The thin dark grey lines show local midnight, and the thick light grey bands show the ALMA engineering time, which normally is unavailable for Early Science observations. The vertical darker grey bands show the anticipated February shutdown and the end of Cycle 1 in November.

Sidebands

• Receivers sensitive to two separate ranges of sky frequency: sidebands

Sideband width varies by receiver band Band 3: 4 GHz, Band 6: 5 GHz, Band 7: 4 GHz, Band 9: 8 GHz

j.

Basebands

- Each antenna has 4 digitizers which can each sample 2 GHz of bandwidth
- These 2 GHz chunks are termed **basebands** (they may overlap)
- Basebands must be distributed in the frequency covered by the sidebands (all 4 in one sideband, or two in each; Band 9 does not have this restriction)

Local Oscillator Frequency

Spectral Windows

- To collect data, you set up a **spectral window** in one or more basebands
- These regions of the spectrum are processed by the correlator
- The correlator allows tradeoff of frequency resolution and bandwidth
- In Cycle I, 4 spectral windows are available.
- Spectral windows must lie within the baseband, sideband, receiver range.

- Pick a frequency (by hand or source + line) for each SPW
 - Splatalogue may help guide choice of lines
- Pick a correlator mode for each SPW
- The OT will configure the LO and basebands to match (if possible)

Baseband-0				
Fraction Center Freq (Rest)	Center Freq (Skv)	Transition	Bandwidth, Channel Spacing	Representativ Window
(Kest)	(5Ky)			window
Salact Lines to Obsanya	in Rasaband_0	Add	20	
Select Lines to Observe	in Baseband-U	Add	ete	
		K		
T				
Select a lir	a with you	Ir.	Add a spectral window by	
Select a lir	ne, with you	ır	Add a spectral window by	
Select a lir source veloci	ne, with you ty, this defir	ir nes a	Add a spectral window by hand.	
Select a lin source veloci	ne, with you ty, this defir	ir nes a	Add a spectral window by hand.	
Select a lir source veloci freq	ne, with you ty, this defir Juency.	ir Nes a	Add a spectral window by hand.	
Select a lin source veloci freq	ne, with you ty, this defir uency.	ir nes a	Add a spectral window by hand.	
Select a lir source veloci freq	ne, with you ty, this defir Juency.	ir ies a	Add a spectral window by hand.	

e.g.Type in "H₂O' A window that can search Splatalogue will open.

Frequency Filters ALMA Band	.g. CO*2-1 or *oxide
Frequency Filters ALMA Band	
I I	Frequency Filters ALMA Band
Sky Frequency (GHz) Min 31.3 Max 950 Receiver/Back End Configuration Image: Hide unobservable lines Filtering unobservable lines Filtering unobservable lines Image: State Energy (K) Image: State Energy (K	1 2 3 4 5 6 7 8 9 10
Min 31.3 Max 950 Receiver/Back End Configuration ✓ Hide unobservable lines ③ Filtering unobservable lines Maximum Upper-state Energy (K) ✓ 20 40 60 80 100 ∞ Molecule Filter / Environment Show all atoms and molecules ▼ Can't find the transition you're looking for in the offline pool? Find more in the online Splatalogue. Find More Reset Filters	Sky Frequency (GHz)
Receiver/Back End Configuration	Min 31.3 - Max 950 -
Maximum Upper-state Energy (K) 0 20 40 60 80 100∞ Molecule Filter / Environment Show all atoms and molecules ▼ Can't find the transition you're looking for in the offline pool? Find more in the online Splatalogue. Find More Reset Filters	Receiver/Back End Configuration Hide unobservable lines Filtering unobservable lines
Molecule Filter / Environment Show all atoms and molecules Can't find the transition you're looking for in the offline pool? Find more in the online Splatalogue. Find More Reset Filters	Maximum Upper-state Energy (K) 0 20 40 60 80 100∞
Show all atoms and molecules Can't find the transition you're looking for in the offline pool? Find more in the online Splatalogue. Find More Reset Filters	Molecule Filter / Environment
Can't find the transition you're looking for in the offline pool? Find more in the online Splatalogue. Find More Reset Filters	Show all atoms and molecules 💌
Find More Reset Filters	Can't find the transition you're looking for in the offline pool? Find more in the online Splatalogue.
Reset Filters	Find More
	Reset Filters

Species Filter

Transitions matching your filter settings

······································							
Transition 🛆	Description	Rest Frequency 🛆	Sky Frequency	Upper-state Energy	Lovas Intensity	Sij µ²	Catalog
H2O v=0 10(2,9)-9(3,6)	Water	321.226 GHz	321.221 GHz	1861.24 K	3	1 D ²	Offline
CH2NH 5(2,3)-4(2,2)	Methanimine	322.162 GHz	322.157 GHz	77.78 K	1.1	7.37 D ²	Offline
CH3OHv t=0 9(1,8)-9(0,9)-+	Methanol	322.239 GHz	322.235 GHz	119.88 K	5.5	17.98 D ²	Offline
H2180 v=0 5(1,5)-4(2,2)	Water	322.465 GHz	322.461 GHz	467.91 K	0.5	0.29 D ²	Offline
HDCO 5(4,2)-4(4,1)	Formaldehyde	322.496 GHz	322.492 GHz	173.65 K	1	9.77 D ²	Offline
HDCO 5(4,1)-4(4,0)	Formaldehyde	322.496 GHz	322.492 GHz	173.65 K	1	9.77 D ²	Offline
CH3OCHO v=0 25(6,19)-24(6,18)A	Methyl Formate	322.522 GHz	322.517 GHz	219.3 K	0.5	62.42 D ²	Offline
CH2CHCN v=0 38(4,35)-38(3,36)	Vinyl Cyanide	322.531 GHz	322.527 GHz	372.67 K	1	50.29 D ²	Offline

Add to Selected Transitions

Selected transitions

A. 70

Transition 🗠	Description	Rest Frequency 🛆	Sky Frequency
H2180 v=0 5(1,5)-4(2,2)		323.153 GHz	323.149 GHz

- Pick a frequency (by hand or source + line) for each SPW
- Pick a correlator mode for each SPW This involves trading off between resolution and bandwidth.
- The OT will configure the LO and basebands to match (if possible)

Spectral	Line									
										?
Baseba	nd-0									
Fraction	n Center Freq (Rest)	Center Freq (Sky)	Transition		Band	width, Channe	l Spacing		Representati Window	ive
1(Full)	100.00000 GHz	100.00000 GHz	Manual window	58.594 MHz(176 km/s),	15.259 kHz	(0.046	km/s)		
				58.594 MHz(176 km/s),	15.259 kHz	(0.046	km/s)		
				117.188 MHz(351 km/s),	30.518 kHz	(0.091	km/s)		
				234.375 MHz(703 km/s),	61.035 kHz	(0.183	km/s)		
I				468.750 MHz(1405 km/s),	122.070 kHz	(0.366	km/s)		
				937.500 MHz(2811 km/s),	244.141 kHz	(0.732	km/s)		
Selec	t Lines to Observe in	n Baseband-0	Add Dele	1875.000 MHz(5621 km/s),	488.281 kHz	(1.464	km/s)		
				2000.000 MHz(5621 km/s),	15.625 MHz	(46.843	km/s)		
									_	

Pick a correlator mode from the drop-down menu.

- Pick a frequency (by hand or source + line) for each SPW
- Pick a correlator mode for each SPW
- The OT will configure the LO and basebands to match (if possible)

VISUALIZING THE SPECTRAL SETUP IN THE OT

نى

- Pick a frequency (by hand or source + line) for each SPW
- Pick a correlator mode for each SPW
- The OT will configure the LO and basebands to match (if possible)

VISUALIZING THE SPECTRAL SETUP IN THE OT

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

• Single field

-ALMA

Up to 15 individual fields in one Science Goal $\underline{\rm if}$ they are within 15° Up to 5 different velocities in each Science Goal

• Mosaic

OFFSETS ARE MOSAICS, MOSAICS TRADE EFFICIENCY FOR IMAGING QUALITY UP TO 150 POINTS (TOTAL: MOSAIC, OFFSET) PER PROPOSAL

ир
ook at and your mapping specification. his with the Visual Editor – select the spatial tab.
naut SinglePoint Beta Pictoris
Pictoris Resolve
P Name of object Unspecified
System J2000 Sexagesimal display? RA 05:47:17.0877 PM RA 4.65000 mas Dec -51:03:59.441 PM Dec 83.10000 mas/yr Resolved by simbad.ustrasbg.fr
20.000 km/s V hel V z 0.000066715 Doppler Type RELATIVISTIC V
Multiple Pointings 〇 1 Rectangular Field

Multiple sources in one Science Goal

• Single field

UP TO 15 INDIVIDUAL FIELDS IN ONE SCIENCE GOAL IF THEY ARE WITHIN 15° UP TO 5 DIFFERENT VELOCITIES IN EACH SCIENCE GOAL

• Mosaic

NRAC

OFFSETS ARE MOSAICS, MOSAICS TRADE EFFICIENCY FOR IMAGING QUALITY UP TO 150 POINTS (TOTAL: MOSAIC, OFFSET) PER PROPOSAL

Rectangle		2 -
	Coords Type ABSOLUTE RELATIVE System J2000 Field Center Coordinates Offset(Longitude) -4.08150 arcsec Offset(Latitude) 1.44704 arcsec	
	p length 144.76218 arcsec 👻	
	q length 91.74826 arcsec 👻	
	Position Angle -39.20369 deg 💌	
	Spacing 0.48113 fraction of main beam 💌 Reset to Nyquist	
	#Pointings 12m Array 18 7m Array 7 Export	

Single field

-ALMA

UP TO 15 INDIVIDUAL FIELDS IN ONE SCIENCE GOAL <u>IF</u> THEY ARE WITHIN 15° UP TO 5 DIFFERENT VELOCITIES IN EACH SCIENCE GOAL

• Mosaic

OFFSETS ARE MOSAICS, MOSAICS TRADE EFFICIENCY FOR IMAGING QUALITY UP TO 150 POINTS (TOTAL: MOSAIC OR OFFSETS) PER PROPOSAL

• Single field

UP TO 15 INDIVIDUAL FIELDS IN ONE SCIENCE GOAL IF THEY ARE WITHIN 15° UP TO 5 DIFFERENT VELOCITIES IN EACH SCIENCE GOAL

• Mosaic

OFFSETS ARE MOSAICS, MOSAICS TRADE EFFICIENCY FOR IMAGING QUALITY UP TO 150 POINTS (TOTAL: MOSAIC, **OFFSET**) PER PROPOSAL

PointingPattern	: Offset	v	
Offset Unit	arcmin	-	
#Pointings	5		
RA [arci	min]	Dec [arcmin]	
0.00000		0.25000	
0.00000		-0.25000	
-0.25000		0.00000	
0.25000		0.00000	
[Add	Delete	

Individual Offset Field Centers

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

Control and Performance

- Target angular resolution
 CONSTRAINS TELESCOPE CONFIGURATION ALLOWED WHEN DATA ARE TAKEN
- Target RMS noise FOR A FIDUCIAL FREQUENCY AND BANDWIDTH (BOTH USER SPECIFIED)
- Request for ACA observations
 Largest angular scale + target angular resolution will recommend

Sensitivity

Target RMS noise

FOR A FIDUCIAL FREQUENCY AND BANDWIDTH (BOTH USER SELECTED)

Common Parameters		Sens	itivity Ca	lcu	lator	_	_	_		_	_
common runameters											
	Dec		00:00:0	0.0	00						
	Polarization		Dual					-			
	Observing Frequency		345.000	00		GHz		-			
	Bandwidth pe	r Polarization	0.00000			GHz		-			
	Water Vapour		Auton	Automatic Choice Manual Choice					- !]		
	tau/Tsky	,	$t_{au=0.1}$	n (3 58.	Tskv=44.4	100 K					
	Tsys		153.577	K							
Individual Parameters											
12	2m Array				7m Array			1	Total Power	Array	
Number of Antennas 32	2				9				2		
Resolution 0.	.00000	arcsec		▼ 5.974554 arcsec			17.923662 arcsec		:		
Sensitivity(rms) 0.	.00000	Jy		-	0.00000	J	у	-	0.00000	Jy	-
(equivalent to) In	ifinity	К		-	0.00000	ŀ	< (-	0.00000	К	-
Integration Time 0.	.00000	s		-	0.00000	s	5	-	0.00000	s	-
			I	nte	gration Tim	e Unit (Optic	on A	utomatic		-
Ca	alculate Integra	tion Time	Ca	lcul	ate Sensitiv	/ity		Cl	ose		

Sensitivity

• Target RMS noise

FOR A FIDUCIAL FREQUENCY AND BANDWIDTH (BOTH USER SELECTED)

39

Sensitivity

• Time Request OT WILL CALCULATE A ROUGH TIME ESTIMATE, INCLUDING OVERHEADS

Desired Performance		Л
Desired Angular Resolution 2	2.0 arcsec 🗸	
Largest Angular Structure in source	Point Source Extended Source 0.00000 arcsec	
Desired sensitivity per pointing	0.1 mJy v equivalent to 0.00267 K v	
Bandwidth used for Sensitivity	AggregateBandWidth 👻 Frequency Width 7.500000 GHz	
Do you request complementary ACA Observations?	Yes No Suggest	
Science goal integration time estimate	Time Estimate	
Does your setup need more time than is indicated by the time estimate?	⊖ Yes ⑧ No	
Is this observing time constrained (occultations, coordinated observing,)?	⊖ Yes ⑧ No	

Control and Performance

ALMA OT - Information	
Estimated time	8
Requested sensitivity	0.1000 mJy
Bandwidth used for sensitivity	7.500 GHz
Representative frequency (sky, first source)	107.00 GHz
Precipitable water vapour (first source)	2.748mm (6th Octile)
ALMA 12m Array	
Array configuration	C32-2
Time on source per pointing	1.24 min
Total number of pointings (all sources)	1
Total time on source	1.24 min
Total time on calibrators	2.35 min
Total overheads	7.33 min
Total 12m array time (inc. calibration & overheads)	10.92 min
Calibration Breakdown	
Estimated number of tunings required	1
1 x Bandpass (inc. AtmosphericCal)	26.84 s
3 x Pointing	54.00 s
1 x Amplitude (inc. AtmosphericCal)	26.03 s
1 x Phase	8.00 s
1 x Atmospheric	26.00 s
Additonal calibration overheads	4.67 min
Achievable Sensitivity	
Single Continuum with 12m Array	0.1000 mJy
Single Continuum with 12m Array	0.0974 mJy
Single Continuum with 12m Array	0.0926 mJy
Single Continuum with 12m Array	0.0924 mJy
Estimated total time for science goal	10.92 min
OK	

Resolution

- Target angular resolution
 Constrains telescope configuration allowed when data are taken
- High resolution leads to lower surface brightness sensitivity RMS PROPORTIONAL TO BEAMWIDTH² HOLDING ALL OTHER FACTORS FIXED.

Maximum Angular Scale

• Maximum angular scale (MAS) recovered by array

Band	Frequency	Primary	Range of Scales (")		
	(GHz)	beam (")	C32-1	C32-6	
3	84-116	72 - 52	4.2 - 24.6	0.7 - 15.1	
6	211-275	29 - 22	1.8 - 10.7	0.3 - 6.6	
7	275-373	22 - 16	1.2 - 7.1	0.2 - 4.4	
9	602-720	10 – 8.5	0.6 - 3.6	0.1 - 2.2	

- **Smooth** structures larger than MAS **begin** to be resolved out.
- All flux on scales larger than λ/B_{min} (~2 x MAS) completely resolved out. Need additional observations with a single-dish or a compact array of small telescopes.

Maximum Angular Scale

• Maximum angular scale (MAS) recovered by array

Band	Frequency (GHz)	Primary beam (")	C	Range (of Scales (") C32)	
3	84-116	72 - 52	4.2 -	24.6	0.7 -	15.1	
6	211-275	29 - 22	1.8 -	10.7	0.3	6.6	
7	275-373	22 - 16	1.2	7.1	0.2	4.4	
9	602-720	10 – 8.5	0.6	3.6	0.1	2.2	

- **Smooth** structures larger than MAS begin to be resolved out.
- All flux on scales larger than λ/B_{min} (~2 x MAS) completely resolved out. Need additional observations with a single-dish or a compact array of small telescopes.

Largest Angular Scale (LAS) ALMA

Largest angular scale of interest for target ۲ DEPENDS ON SOURCE STRUCTURE AND SCIENCE AIMS

e.g., compact sources embedded in a smooth superstructure holding ~65% of flux (here with perfect S/N)

Largest Angular Scale (LAS) ALMA

Superstructure of scientific interest? ٠ THEN YOUR RMS AND LAS MUST REFLECT THAT.

RMS set to detect superstructure and LAS input to reflect size of structure.

• Only embedded compact sources of interest?

RMS set to detect compact sources and LAS input to reflect compact source size.

ACA Example (see Primer)

Images using 12-m C2 array with a resolution of 0.8"x0.7" in pa 80d

Primary beam corrected: 20% cutoff: Contours: -20,20,50,100,200,300,400,600,800,1000,1200,1600,2000

ONLY ~250 hours (1/3 of total time) will go to projects needing ACA.

ONLY ~250 hours (1/3 of total time) will go to projects needing ACA.

A spiral galaxy where the model (center) is an IRAC 8 micron image as a proxy for CO.

In the top row, a simulated image reconstructed using a smaller LAS is shown; only compact bright features are present in the image on the left. On the right, the ACA was used to recover extended emission; the fidelity of the image is improved markedly.

In the bottom row, the image was reconstructed using a larger LAS is shown; compact structure is much better represented. Image fidelity is further improved through the use of the ACA.

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

Proposal Checklist

□ Read Primer and Proposer's Guide

Create an ALMA account by registering at the Science Portal

Download the Observing Tool (OT)

□ Familiarize yourself with the OT via the Quickstart Video

Define your Science Goals within the OT

use the OT to understand if your science goals match ALMA's capabilities use CASA simdata for a more thorough exploration take advantage of the TA Checklisted generated by the OT

Prepare the Science & Technical Justifications (one PDF file)

Annotated LaTeX template available

□ Make use of the Helpdesk & the Knowledgebase

❑ <u>Submit!</u>

Required Step

TA Checklist

F-1

Checklist of technical concerns generated by the OT as part of PDF output

Field Setup:	
Target(s) max. elevation is low (< 20 degrees)	_
Target(s) max. elevation is high (> 84 degrees)	_
Non-zero proper motion of target(s)	1
Spatial dynamic range > 500 (on basis of peak flux to rms)	_
Spectral dynamic range > 1000 (B3, B6), 500 (B7), 100 (B9)	_
Mosaic pointing separation outside range 0.48 - 0.8 1.2* λ /D	_
Velocity frame is not LSR_K	1
Velocity definition is relativistic	1
Spectral Setup:	
Single Polarization selected	—
Linewidth > 90% spectral window width	—
Single spectral window only selected	—
Calibration:	
Any user calibration selected	—
Control and Parameters:	
Largest scale of interest > max. recoverable scale	1
Extra time selected	_
ACA request and necessity estimator diagreement	_

Proposal Checklist

□ Read Primer and Proposer's Guide

Create an ALMA account by registering at the Science Portal

Download the Observing Tool (OT)

□ Familiarize yourself with the OT via the Quickstart Video

Define your Science Goals within the OT

use the OT to understand if your science goals match ALMA's capabilities use CASA simdata for a more thorough exploration take advantage of the TA Checklisted generated by the OT

Prepare the Science & Technical Justifications (one PDF file)

Annotated LaTeX template available

□ Make use of the Helpdesk & the Knowledgebase

❑ <u>Submit!</u>

Required Step

The ALMA Science Portal

https://almascience.nrao.edu

Hub for project-wide material.

- Observing Tool
- Sensitivity Calculator
- Proposer's Guide
- Technical Handbook
- Science Verification Data
- CASA & Simulations
- Tutorials
- Helpdesk

Registration required to propose for PIs and cols.

The Atacama Large Millimeter/sub-millimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

NRAO Proposal Planning Webinar

NEXT PRESENTATION: 18:30 UT

- 17:00 UT (1pm EDT) Planning an ALMA Proposal
- 18:30 UT (2:30pm EDT) Planning a GBT Proposal
- 19:30 UT (3:30pm EDT) Planning a JVLA/VLBA Proposal
- 21:00 UT (5:00pm EDT) Open Questions & Answers

Important information:

- Sound available only through voice bridge.
 - USA Toll Number : +1-210-835-9155
 - USA Toll Free Number : 866-815-0456
 - Participant Passcode: 3535975#
- Ask question through webinar "Chat" feature
 - Click green area in top center of your screen

RETURN

- Click on "Chat"
- Select Send to: Aaron Evans (Host)
- Supporting Material: *https://science.nrao.edu/science/meetings/nrao-cde*

Participane / Chat

Annotate

Options

Send to:

Viewing NRAO CV_Presenter's appl.

AARON EVANS (Host)

• When in doubt, simulate!

"OBSERVE" A MODEL OF YOUR TARGET WITH 12-M AND 12-M+ACA, COMPARE

