NRAO Proposal Planning Webinar

Webinar Schedule:

- 17:00 UT (1pm EDT) Planning an ALMA Proposal
- 18:30 UT (2:30pm EDT) Planning a GBT Proposal
- 19:30 UT (3:30pm EDT) Planning a JVLA/VLBA Proposal
- 21:30 UT (5:30pm EDT) Open Questions & Answers

Important information:

- Sound available only through voice bridge.
 - USA Toll Number: +1-210-835-9155
 - USA Toll Free Number: 866–815–0456
 - Participant Passcode: 3535975#
- Ask question through webinar "Chat" feature
 - Click green area in top center of your screen

Click on "Chat"

Select Send to: Aaron Evans (Host)

Send to: AARON EVANS (Host)

• Supporting Material: https://science.nrao.edu/science/meetings/nrao-cde

Planning ALMA Observations

Atacama Large mm/sub-mm Array

Al Wootten

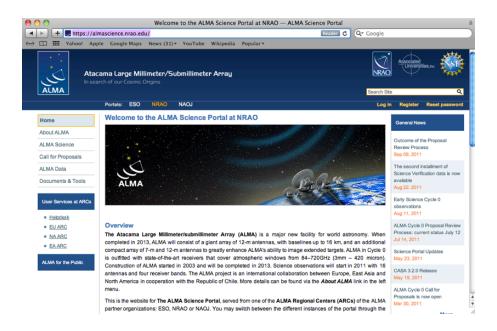
North American ALMA Science Center

Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array
Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

Talk Outline

- ALMA Overview and Status
- The Key Decisions When Proposing for ALMA

The ALMA Science Portal



Hub for project-wide material.

- Observing Tool
- Sensitivity Calculator
- Proposer's Guide
- Technical Handbook
- Science Verification Data
- CASA & Simulations
- Tutorials
- Helpdesk

Registration required to propose for PIs and cols.

ALMA Basics

• Global partnership (shared cost ~1.3 billion 2006\$):

North America (US, Canada, Taiwan)

Europe (ESO)

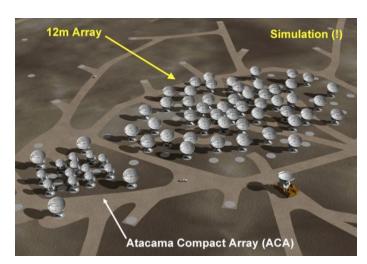
East Asia (Japan, Taiwan)

In collaboration with Chile

- Unique high, dry site:
 5000m (16,500 ft) in Chilean Atacama desert
- At least 66 submillimeter/millimeter telescopes:
 12-m Array 50 x 12-m
 Atacama Compact Array (ACA) 12x7-m, 4x12-m
- On budget and on time for completion in 2013

ALMA Basics

Global partnership (shared cost ~1.3 billion):


North America (US, Canada, Taiwan)

Europe (ESO)

East Asia (Japan, Taiwan)

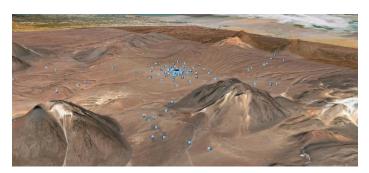
In collaboration with Chile

• Unique high, dry site: 5000m (16,500 ft) in Chilean Atacama desert

At least 66 submillimeter/millimeter telescopes:

12-m Array -50×12 -m Atacama Compact Array (ACA) - I2x7-m, 4xI2-m

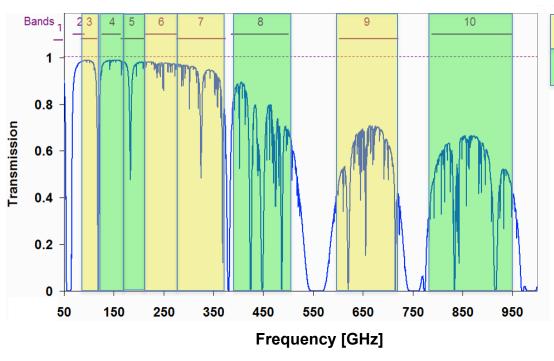
On budget and on time for completion in 2013


Full Science Capabilities

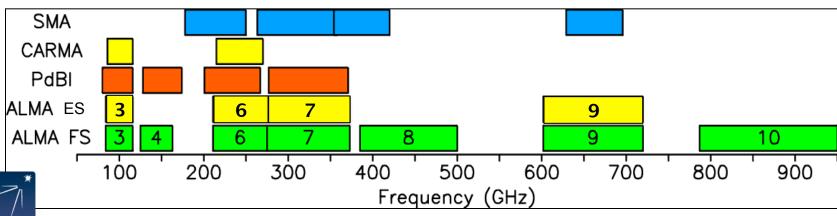
ALMA ...

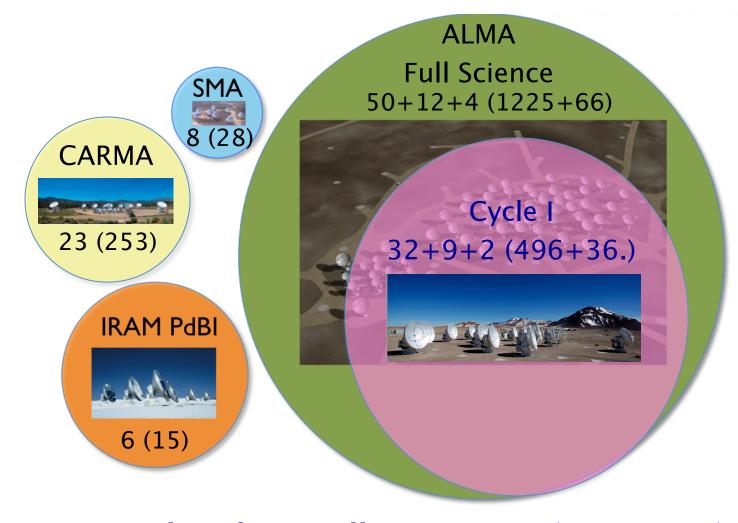
10-100× better sensitivity and resolution than current mm arrays.

- Baselines to ~15 km (0.015" at 300 GHz) in "zoom lens" configurations
- Sensitive, precision imaging 84 to 950 GHz (3 mm to 315 μm) employing state-of-the-art low-noise, wide-band SIS receivers (8 GHz bandwidth per polarization)
- Flexible correlator with high spectral resolution at wide bandwidth
- Full polarization capabilities
- Development Program: Future upgrades (BI,B2, B5,?)



Frequency Coverage


NRAO



Early Science (now)
Full Operations

Collecting Area & Baselines

Circles Show Collecting Area (sensitivity)

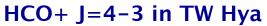
Captions give # of antennas and # of baselines (fidelity)

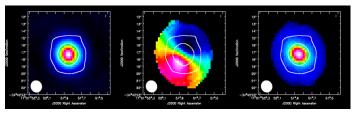
Current Status

C AMA

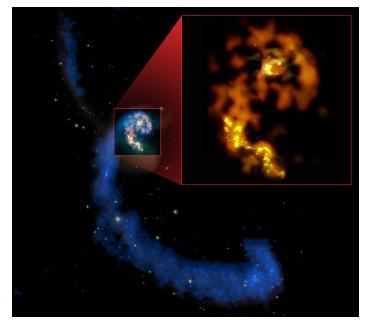
- Cycle 0 observing began 30 Sep '11.
- Cycle 1 call for proposals out (12 July)
- Data delivered to Pls.
- Commissioning ongoing.
- 31+ antennas at high site.
- Correlators (ACA and main) working.
- All antennas: B3, 6, 7, and 9 receivers.
- Science verification ongoing, data publicly available.

Science Verification Data


ALMA S

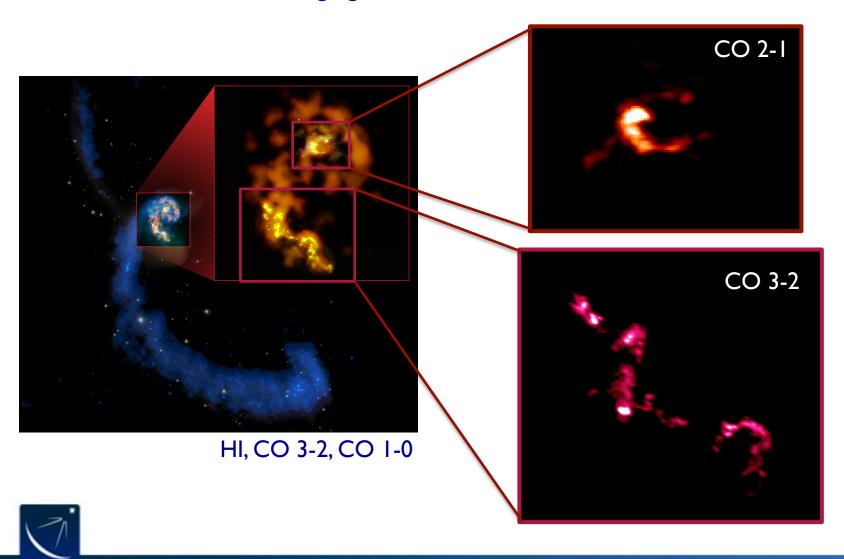


 ALMA data released for: BR1202 (HIGH REDSHIFT QUASAR) THE ANTENNAE GALAXIES* NGC 3256* M100SGR A-STAR ORI B6 SPECTRAL SCAN IRAS 16923 (B9*)



- download from ALMA Science Portal http://almascience.org/
- * CASA guide available at http://casaguides.nrao.edu

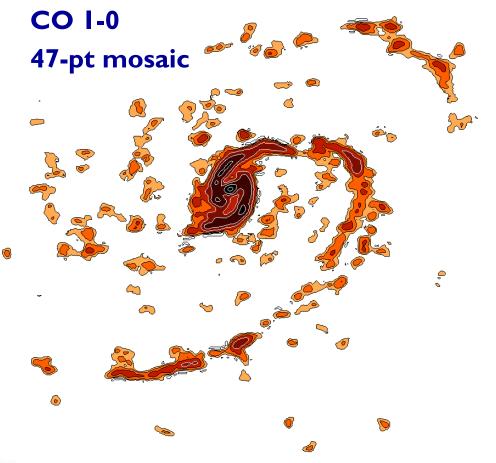
CO J=3-2 in the Antennae

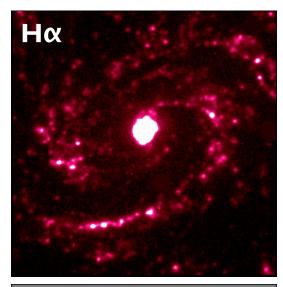


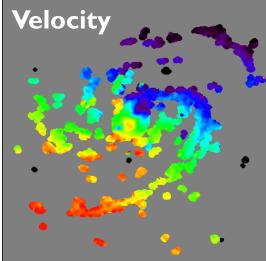
TW HYDRA*

ALMA Images Nearby Galaxies

-ALMA

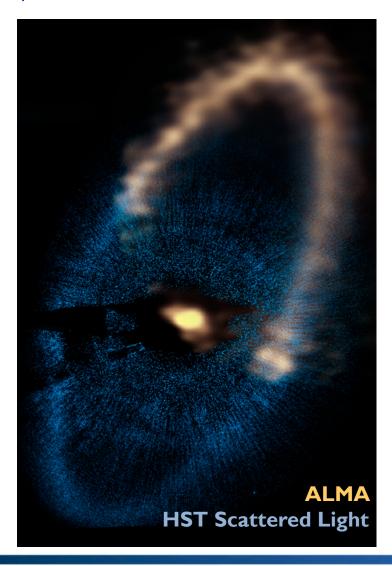

• Science verification imaging of the Antennae Galaxies




ALMA Images Nearby Galaxies

ALMA

• Science verification imaging of M100



ALMA Images Debris Disks

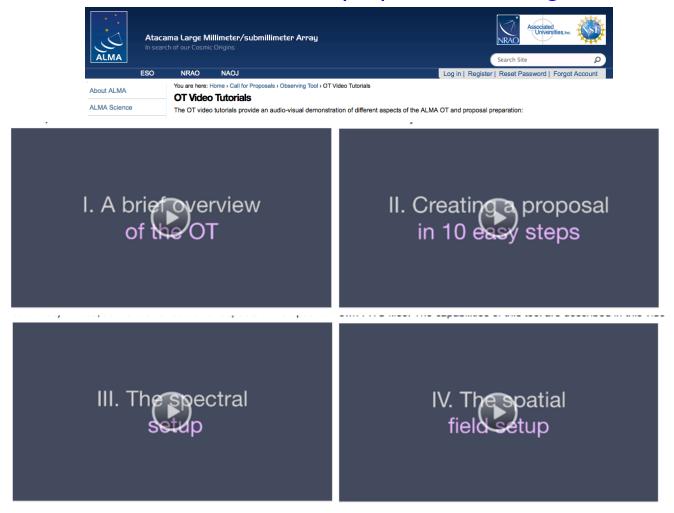
ALMA

• Pl Boley (U. Florida) Data on Fomalhaut Debris Disk

ALMA Cycle I

- Proposals due July 12 OBSERVING PERIOD COVERS ~10 MONTHS
- 32 12-m Antennas ("Twelve Meter Array")
- ACA: Nine 7-m Antennas, Two "Total Power" 12-m Antennas ACA OBSERVATIONS MAY BE REQUESTED TO SUPPLEMENT 12-M WITH "SHORT SPACINGS"
- Maximum baselines 160-m to 1-km
- Receiver Bands 3, 6, 7, and 9
- Mosaics up to 150 pointings
- About 800 hours of 12-m array time available UP TO ~ ONE-THIRD OF TIME MAY HAVE ACA OBSERVATIONS

Talk Outline


- ALMA Overview and Status
- The Key Decisions When Proposing for ALMA

Practical Introduction

- Video Tutorials and Quickstart Guides
- https://almascience.nrao.edu/call-for-proposals/observing-tool/video-tutorials

Key Proposal Factors

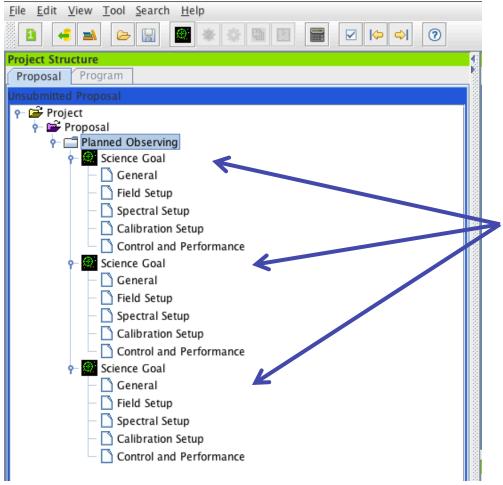
- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

Science Goal (Cycle I)

- One correlator + front end setup in one ALMA band SPECTRAL WINDOWS, REST FREQUENCY, POLARIZATION, LINE VS. CONTINUUM
- Subject to one set of control parameters

 SPATIAL RESOLUTION, LARGEST ANGULAR SCALE, SENSITIVITY, DYNAMIC RANGE
- Using one mapping strategy MOSAIC, OFFSETS, SINGLE FIELDS
- Using one calibration strategy SYSTEM OR USER DEFINED
- Applied to Sky Targets within 15°

 UP TO 15 PER SCIENCE GOAL OR 150 FIELDS PER MOSAIC, UP TO 5 DIFFERENT VELOCITIES



Science Goal (Cycle I)

- Fundamental unit (below proposal) in the ALMA OT
- Five Science Goals allowed per proposal in Cycle 1

In practice:

- Up to 5 Science Goals
- Specify control & performance, spectral setup, field setup for each

Key Proposal Factors

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

Spectral Setup: Receiver

• Four receiver "bands," set spectral coverage OBSERVING FREQUENCY ALSO AFFECTS RESOLUTION, PRIMARY BEAM

Band	Frequency (GHz)	Primary beam (arcsec)	Angular Resolution (arcsec)	Continuum Sensitivity (mJy min ^{1/2})
3	84 - 116	62	0.6 - 4.1	0.09
6	211 - 275	25	0.3 - 1.7	0.14
7	275 - 373	19	0.2 - 1.2	0.25
9	602 - 720	9	0.1 - 0.6	2.5

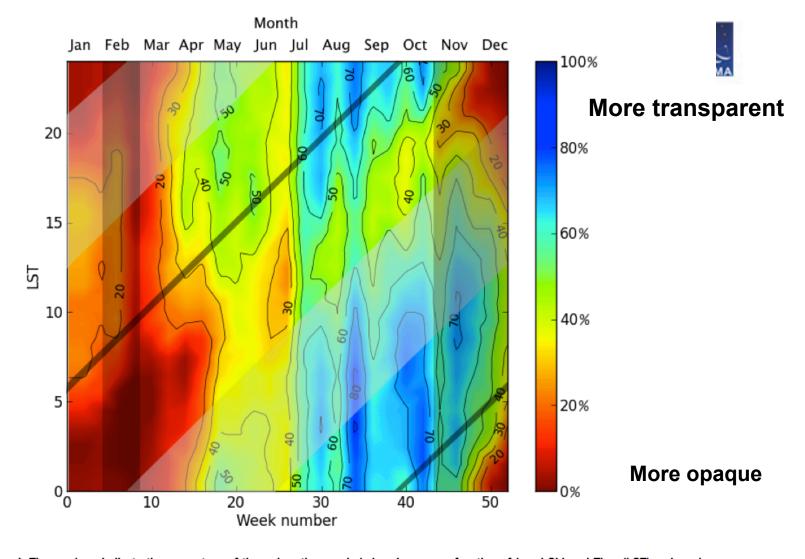
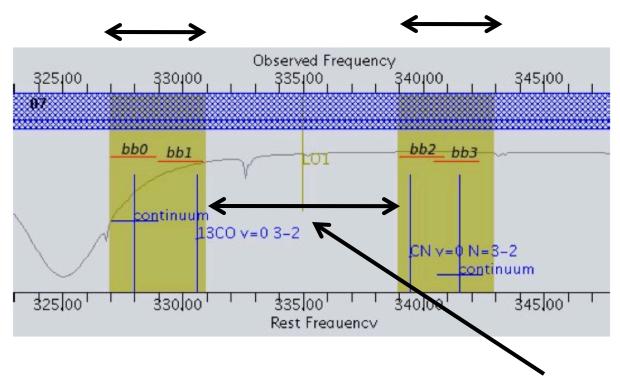
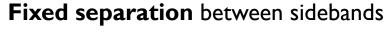


Figure 1. The numbers indicate the percentage of time when the pwv is below 1 mm as a function of Local Sidereal Time (LST) and week number beginning with January 1, 2013. Red indicates times with very little time available at low PWV and therefore less suitable for high frequency observing, while blue indicates times with a large fraction of time available at low PWV. The data were obtained with the APEX radiometer in the years 2007-2011 (5 years). The thin dark grey lines show local midnight, and the thick light grey bands show the ALMA engineering time, which normally is unavailable for Early Science observations. The vertical darker grey bands show the anticipated February shutdown and the end of Cycle 1 in November.


Sidebands

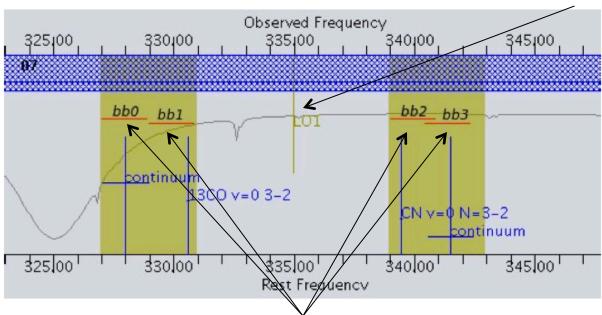


Receivers sensitive to two separate ranges of sky frequency: sidebands

Sideband width varies by receiver band

Band 3: 4 GHz, Band 6: 5 GHz, Band 7: 4 GHz, Band 9: 8 GHz

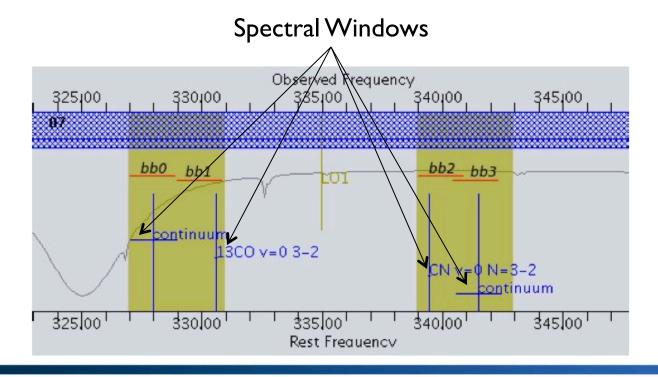
Bands 3, 7, 9: 8 GHz, Band 6: 10 GHz



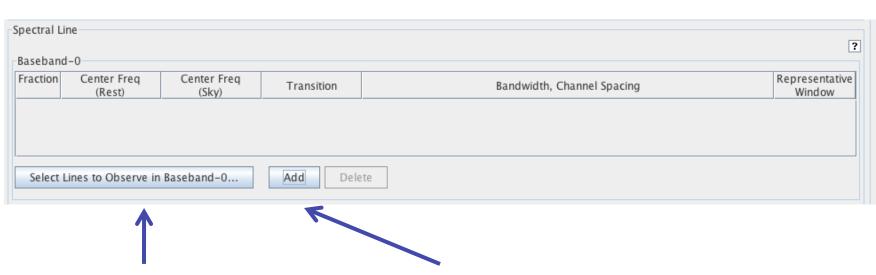
Basebands

- Each antenna has 4 digitizers which can each sample 2 GHz of bandwidth
- These 2 GHz chunks are termed basebands (they may overlap)
- Basebands must be distributed in the frequency covered by the sidebands (all 4 in one sideband, or two in each; Band 9 does not have this restriction)

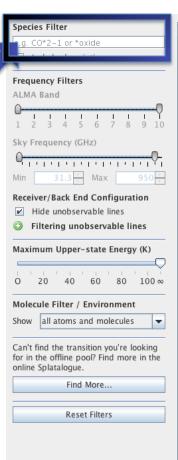
Local Oscillator Frequency



Spectral Windows


- To collect data, you set up a spectral window in one or more basebands
- These regions of the spectrum are processed by the correlator
- The correlator allows tradeoff of frequency resolution and bandwidth
- In Cycle I, 4 spectral windows are available.
- Spectral windows must lie within the baseband, sideband, receiver range.

- Pick a frequency (by hand or source + line) for each SPW
 - Splatalogue may help guide choice of lines
- Pick a correlator mode for each SPW
- The OT will configure the LO and basebands to match (if possible)


Select a line, with your source velocity, this defines a frequency.

Add a spectral window by hand.

e.g. Type
in "H₂O"
A window
that can
search
Splatalogue
will open.

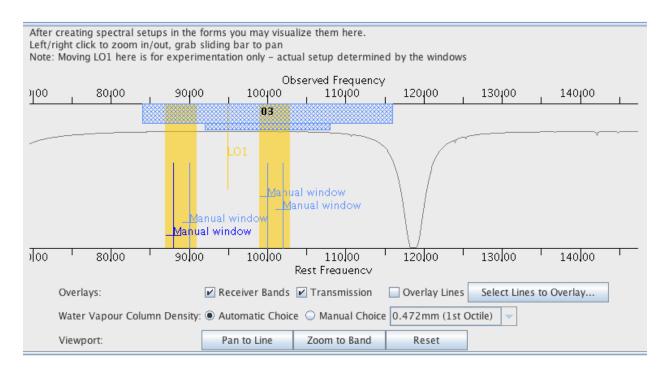
Transitions matching your filter settings									
Transition 🛆	Description	Rest Frequency \triangle	Sky Frequency	Upper-state Energy	Lovas Intensity	Sij μ²	Catalog		
H2O v=0 10(2,9)-9(3,6)	Water	321.226 GHz	321.221 GHz	1861.24 K	3	1 D ²	Offline		
CH2NH 5(2,3)-4(2,2)	Methanimine	322.162 GHz	322.157 GHz	77.78 K	1.1	7.37 D ²	Offline		
CH3OHv t=0 9(1,8)-9(0,9)-+	Methanol	322.239 GHz	322.235 GHz	119.88 K	5.5	17.98 D ²	Offline		
H218O v=0 5(1,5)-4(2,2)	Water	322.465 GHz	322.461 GHz	467.91 K	0.5	0.29 D ²	Offline		
HDCO 5(4,2)-4(4,1)	Formaldehyde	322.496 GHz	322.492 GHz	173.65 K	1	9.77 D ²	Offline		
HDCO 5(4,1)-4(4,0)	Formaldehyde	322.496 GHz	322.492 GHz	173.65 K	1	9.77 D ²	Offline		
CH3OCHO v=0 25(6,19)-24(6,18)A	Methyl Formate	322.522 GHz	322.517 GHz	219.3 K	0.5	62.42 D ²	Offline		
CH2CHCN v=0 38(4,35)-38(3,36)	Vinyl Cyanide	322.531 GHz	322.527 GHz	372.67 K	1	50.29 D ²	Offline		

Add to Selected Transitions

Selected transitions

Transition	Description	Rest Frequency 🛆	Sky Frequency
H218O v=0 5(1,5)-4(2,2)		323.153 GHz	323.149 GHz

- Pick a frequency (by hand or source + line) for each SPW
- Pick a correlator mode for each SPW
 This involves trading off between resolution and bandwidth.
- The OT will configure the LO and basebands to match (if possible)



Pick a correlator mode from the drop-down menu.

- Pick a frequency (by hand or source + line) for each SPW
- Pick a correlator mode for each SPW
- The OT will configure the LO and basebands to match (if possible)

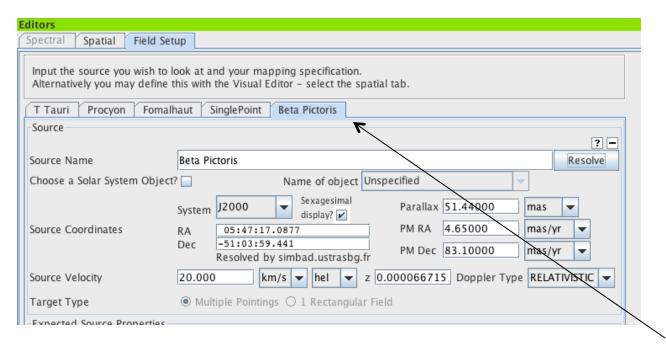
VISUALIZING THE SPECTRAL SETUP IN THE OT

- Pick a frequency (by hand or source + line) for each SPW
- Pick a correlator mode for each SPW
- The OT will configure the LO and basebands to match (if possible)

VISUALIZING THE SPECTRAL SETUP IN THE OT

Key Proposal Factors

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics



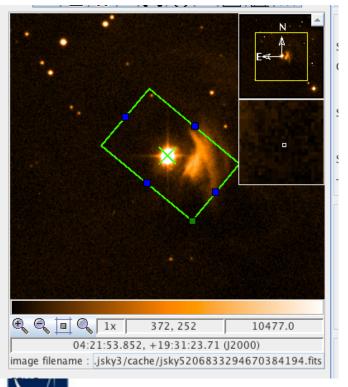
Single field

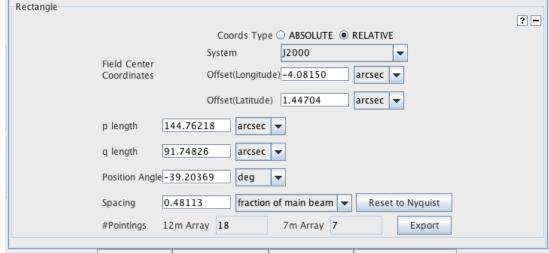
UP TO 15 INDIVIDUAL FIELDS IN ONE SCIENCE GOAL IF THEY ARE WITHIN 15° UP TO 5 DIFFERENT VELOCITIES IN EACH SCIENCE GOAL

Mosaic

OFFSETS ARE MOSAICS, MOSAICS TRADE EFFICIENCY FOR IMAGING QUALITY UP TO 150 POINTS (TOTAL: MOSAIC, OFFSET) PER PROPOSAL

Multiple sources in one Science Goal

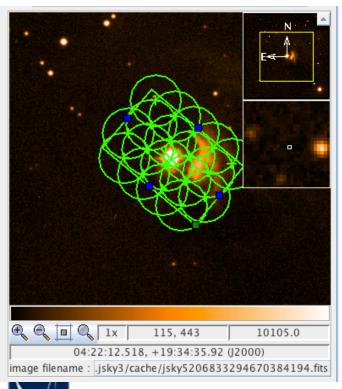


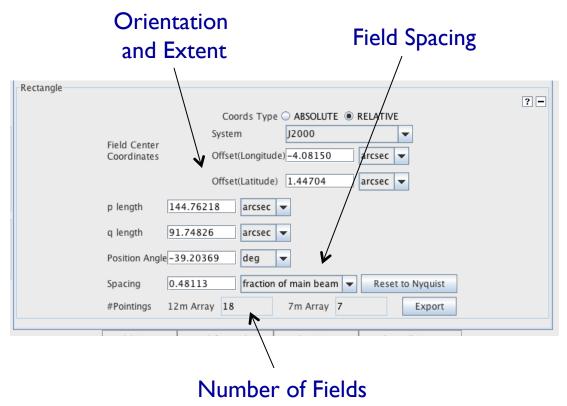

Single field

Up to 15 individual fields in one Science Goal $\underline{\text{IF}}$ they are within 15° Up to 5 different velocities in each Science Goal

Mosaic

OFFSETS ARE MOSAICS, MOSAICS TRADE EFFICIENCY FOR IMAGING QUALITY UP TO 150 POINTS (TOTAL: MOSAIC, OFFSET) PER PROPOSAL

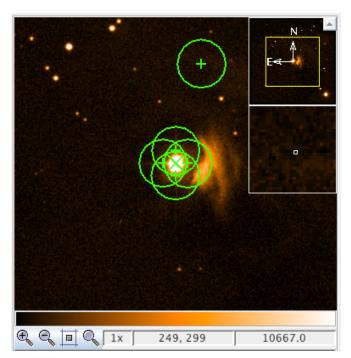


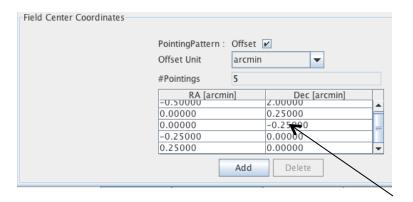


Single field
 Up to 15 individual fields in one Science Goal <u>if</u> they are within 15°
 Up to 5 different velocities in each Science Goal

Mosaic
 OFFSETS ARE MOSAICS, MOSAICS TRADE EFFICIENCY FOR IMA

OFFSETS ARE MOSAICS, MOSAICS TRADE EFFICIENCY FOR IMAGING QUALITY UP TO 150 POINTS (TOTAL: MOSAIC OR OFFSETS) PER PROPOSAL





- Single field
 UP TO 15 INDIVIDUAL FIELDS IN ONE SCIENCE GOAL IF THEY ARE WITHIN 15°
 UP TO 5 DIFFERENT VELOCITIES IN EACH SCIENCE GOAL
- Mosaic
 OFFSETS ARE MOSAICS, MOSAICS TRADE EFFICIENCY FOR IMAGING QUALITY
 UP TO 150 POINTS (TOTAL: MOSAIC, OFFSET) PER PROPOSAL

Individual Offset Field Centers

Key Proposal Factors

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

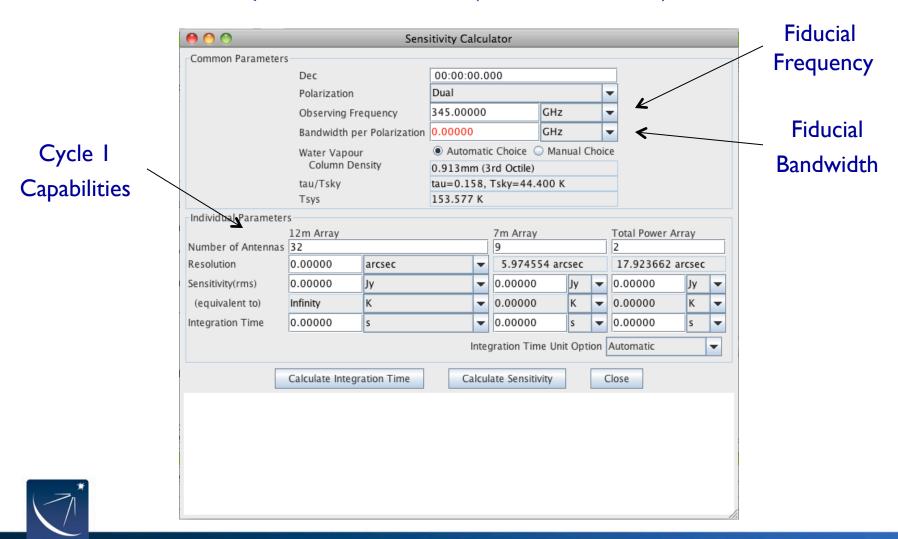
Control and Performance

- Target angular resolution CONSTRAINS TELESCOPE CONFIGURATION ALLOWED WHEN DATA ARE TAKEN
- Target RMS noise FOR A FIDUCIAL FREQUENCY AND BANDWIDTH (BOTH USER SPECIFIED)
- Request for ACA observations LARGEST ANGULAR SCALE + TARGET ANGULAR RESOLUTION WILL RECOMMEND

Sensitivity

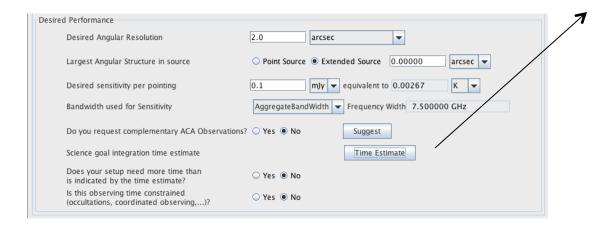
• Target RMS noise FOR A FIDUCIAL FREQUENCY AND BANDWIDTH (BOTH USER SELECTED)

000		Sens	itivity Ca	lcu	ator						
Common Parameter	Common Parameters										
	Dec			00:00:00.000							
	Polarization		Dual					1			
	Observing Fre	quency	345.00000		GHz		١,	-			
	Bandwidth pe	r Polarization	0.00000		GHz		١,	-			
	Water Vapour	,	Autor	nati	c Choice	Man	ual C	hoic	e		
	Column Dei	nsity	0.913mr	n (3	rd Octile)						
	tau/Tsky		tau=0.1	58,	Tsky=44.4	00 K					
	Tsys		153.577	K							
Individual Parameter	rs										
	12m Array				7m Array				Total Power A	rray	
Number of Antennas	32				9				2		
Resolution	0.00000	arcsec		v	5.974554 arcsec			17.923662 arcsec			
Sensitivity(rms)	0.00000	Jy		T	0.00000		Jy	T	0.00000	Jy	-
(equivalent to)	Infinity	K		T	0.00000		K	T	0.00000	K	-
Integration Time	0.00000	s		T	0.00000		s	T	0.00000	s	-
	Integration Time Unit Option Automatic										
	Calculate Integr	ation Time	Ca	lcul	ate Sensitiv	ity		C	lose		
											,

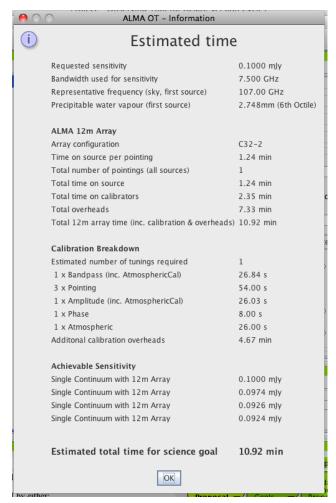

Sensitivity

Target RMS noise

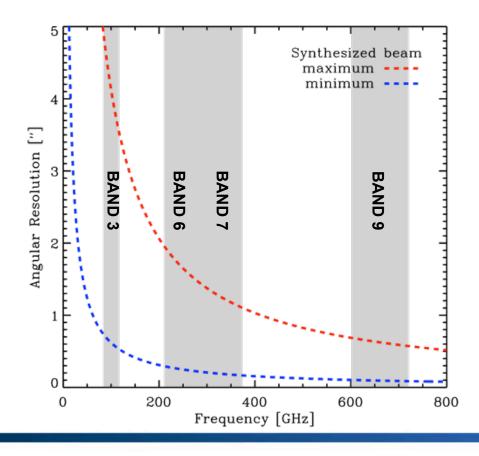
FOR A FIDUCIAL FREQUENCY AND BANDWIDTH (BOTH USER SELECTED)



Sensitivity



• Time Request
OT WILL CALCULATE A ROUGH TIME ESTIMATE, INCLUDING OVERHEADS



Resolution

- Target angular resolution CONSTRAINS TELESCOPE CONFIGURATION ALLOWED WHEN DATA ARE TAKEN
- High resolution leads to lower surface brightness sensitivity RMS PROPORTIONAL TO BEAMWIDTH² HOLDING ALL OTHER FACTORS FIXED.

Maximum Angular Scale

Maximum angular scale (MAS) recovered by array

Band	Frequency	Primary	Range of Scales (")		
	(GHz)	beam (")	C32-1	C32-6	
3	84-116	72 – 52	4.2 - 24.6	0.7 - 15.1	
6	211-275	29 – 22	1.8 - 10.7	0.3 - 6.6	
7	275-373	22 - 16	1.2 - 7.1	0.2 - 4.4	
9	602-720	10 - 8.5	0.6 - 3.6	0.1 - 2.2	

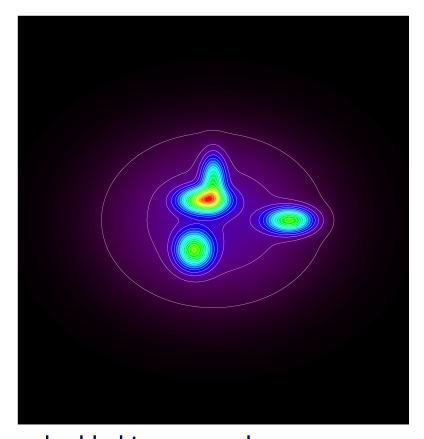
- Smooth structures larger than MAS begin to be resolved out.
- All flux on scales larger than λ/B_{min} (~2 x MAS) completely resolved out. Need additional observations with a single-dish or a compact array of small telescopes.

Maximum Angular Scale

Maximum angular scale (MAS) recovered by array

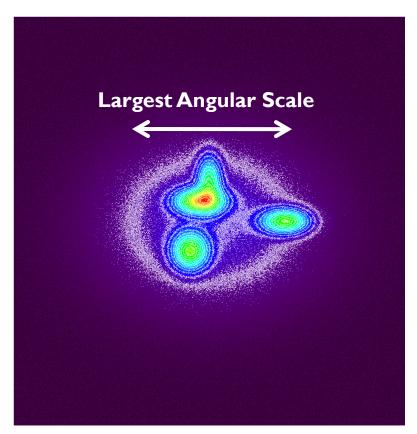
Band	Frequency	Primary			Range of Scales ("))	
	(GHz)	beam (")	C32		C3			
3	84-116	72 - 52	4.2 -	24.6	0.7 -	15.1		
6	211-275	29 – 22	1.8 -	10.7	0.3	6.6		
7	275-373	22 - 16	1.2	- 7.1	0.2	4.4		
9	602-720	10 - 8.5	0.6	- 3.6	0.1	2.2		

- Smooth structures larger than MAS begin to be resolved out.
- All flux on scales larger than λ/B_{min} (~2 x MAS) completely resolved out. Need additional observations with a single-dish or a compact array of small telescopes.



Largest Angular Scale (LAS) ALMA

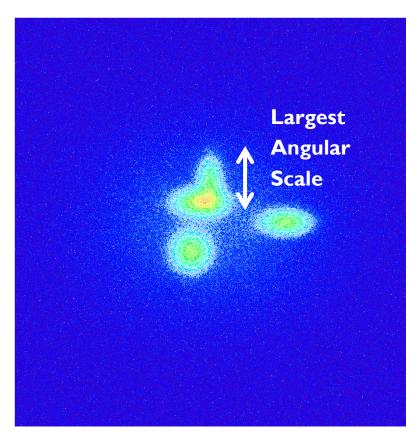
Largest angular scale of interest for target DEPENDS ON **SOURCE STRUCTURE** AND **SCIENCE AIMS**


e.g., compact sources embedded in a smooth superstructure holding ~65% of flux (here with perfect S/N)

Largest Angular Scale (LAS) ALMA

• Superstructure of scientific interest? THEN YOUR RMS AND LAS MUST REFLECT THAT.

RMS set to detect superstructure and LAS input to reflect size of structure.



Largest Angular Scale (LAS) ALMA

• Only embedded compact sources of interest?

RMS set to detect compact sources and LAS input to reflect compact source size.

ACA Example (see Primer)

Images using 12-m C2 array with a resolution of 0.8"x0.7" in pa 80d

MODEL 12m+7m Image 12-m image 1°.4 00°.0 09°58°59°.6 59°.2 12000 Right Assension Restored flux 11000 Jy 7000 Jy 9000 Jy Primary beam corrected: 20% cutoff: Contours: -20,20,50,100,200,300,400,600,800,1000,1200,1600,2000 U-V coverage (red=ACA, blue=ALMA12m) Amplitude vs uv-distance

Largest Angular Scale of Source

Property of the source and your science.

Maximum Angular Scale Recovered by Array

Related to target angular resolution (in Cycle I) because that drives the configuration of antennas used.

ACA Recommended?

If Largest Angular Scale too big for Maximum Angular Scale of 12-m Array, then the OT will recommend the inclusion of the ACA.

Ultimately YOUR Decision

ONLY ~250 hours (I/3 of total time) will go to projects needing ACA.

Largest Angular Scale of Source

Property of the source and your science.

Maximum Angular Scale Recovered by Array

Related to target angular resolution (in Cycle I) because that drives the configuration of antennas used.

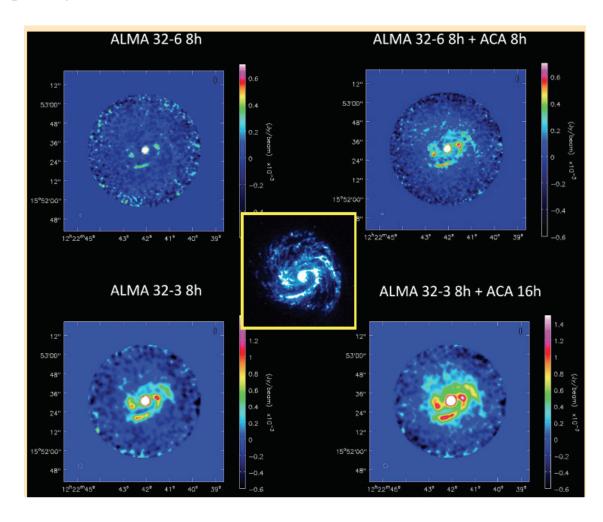
ACA Recommended?

If Largest Angular Scale too big for Maximum Angular Scale of 12-m Array, then the OT will recommend the inclusion of the ACA.

ACA not available for highest resolutions (not enough overlap in u-v coverage)

Ultimately YOUR Decision

ONLY ~250 hours (I/3 of total time) will go to projects needing ACA.



A spiral galaxy where the model (center) is an IRAC 8 micron image as a proxy for CO.

In the top row, a simulated image reconstructed using a smaller LAS is shown; only compact bright features are present in the image on the left. On the right, the ACA was used to recover extended emission; the fidelity of the image is improved markedly.

In the bottom row, the image was reconstructed using a larger LAS is shown; compact structure is much better represented. Image fidelity is further improved through the use of the ACA.

Key Proposal Factors

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

Proposal Checklist

	Read Primer and Proposer's Guide
	Create an ALMA account by registering at the Science Portal
	Download the Observing Tool (OT)
	Familiarize yourself with the OT via the Quickstart Video
<u> </u>	Define your Science Goals within the OT use the OT to understand if your science goals match ALMA's capabilities use CASA simdata for a more thorough exploration take advantage of the TA Checklisted generated by the OT
	Prepare the Science & Technical Justifications (one PDF file) Annotated LaTeX template available
	Make use of the Helpdesk & the Knowledgebase
	Submit!

Required Step

TA Checklist

F-1

Checklist of technical concerns generated by the OT as part of PDF output

Field Setup:	
Target(s) max. elevation is low (< 20 degrees)	_
Target(s) max. elevation is high (> 84 degrees)	_
Non-zero proper motion of target(s)	1
Spatial dynamic range > 500 (on basis of peak flux to rms)	_
Spectral dynamic range > 1000 (B3, B6), 500 (B7), 100 (B9)	_
Mosaic pointing separation outside range 0.48 - 0.8 1.2*λ/D	
Velocity frame is not LSR_K	1
Velocity definition is relativistic	1
Spectral Setup:	
Single Polarization selected	_
Linewidth > 90% spectral window width	_
Single spectral window only selected	_
Calibration:	
Any user calibration selected	_
Control and Parameters:	
Largest scale of interest > max. recoverable scale	1
Extra time selected	_
ACA request and necessity estimator diagreement	

Proposal Checklist

	Read Primer and Proposer's Guide
	Create an ALMA account by registering at the Science Portal
	Download the Observing Tool (OT)
	Familiarize yourself with the OT via the Quickstart Video
<u> </u>	Define your Science Goals within the OT use the OT to understand if your science goals match ALMA's capabilities use CASA simdata for a more thorough exploration take advantage of the TA Checklisted generated by the OT
	Prepare the Science & Technical Justifications (one PDF file) Annotated LaTeX template available
	Make use of the Helpdesk & the Knowledgebase
	Submit!

Required Step

The ALMA Science Portal

Hub for project-wide material.

- Observing Tool
- Sensitivity Calculator
- Proposer's Guide
- Technical Handbook
- Science Verification Data
- CASA & Simulations
- Tutorials
- Helpdesk

Registration required to propose for PIs and cols.

NRAO Proposal Planning Webinar

NEXT PRESENTATION: 18:30 UT

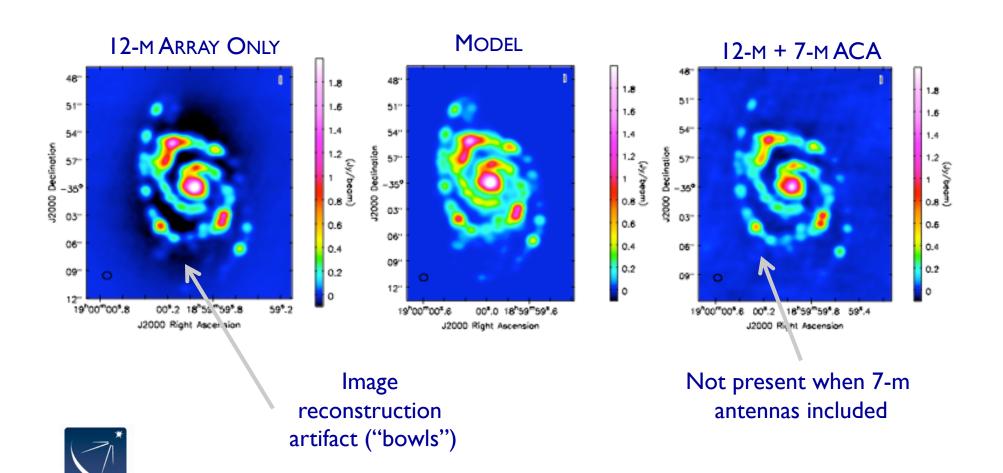
- 17:00 UT (1pm EDT) Planning an ALMA Proposal
- 18:30 UT (2:30pm EDT) Planning a GBT Proposal
- 19:30 UT (3:30pm EDT) Planning a JVLA/VLBA Proposal
- 21:30 UT (5:30pm EDT) Open Questions & Answers

Important information:

- Sound available only through voice bridge.
 - USA Toll Number: +1-210-835-9155
 - USA Toll Free Number: 866-815-0456
 - Participant Passcode: 3535975#
- Ask question through webinar "Chat" feature
 - Click green area in top center of your screen

- Click on "Chat"

Select Send to: Aaron Evans (Host)


Send to: AARON EVANS (Host)

Supporting Material: https://science.nrao.edu/science/meetings/nrao-cde

When in doubt, simulate! "OBSERVE" A MODEL OF YOUR TARGET WITH 12-M AND 12-M+ACA, COMPARE

