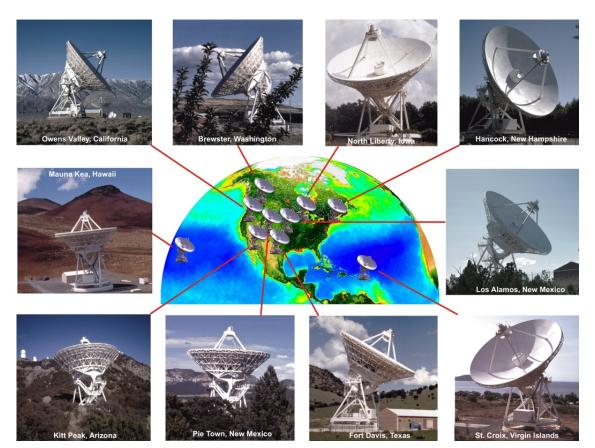
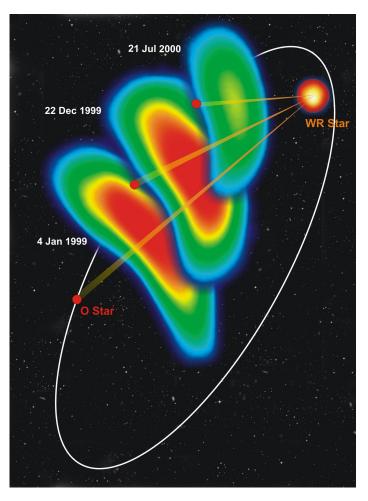
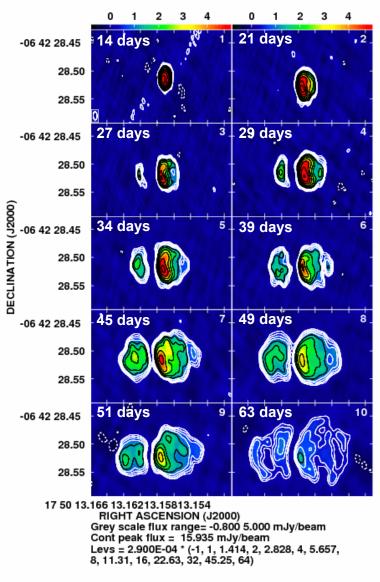
The Very Long Baseline Array: Capabilities


Amy Mioduszewski Array Science Center

> Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array


Basics

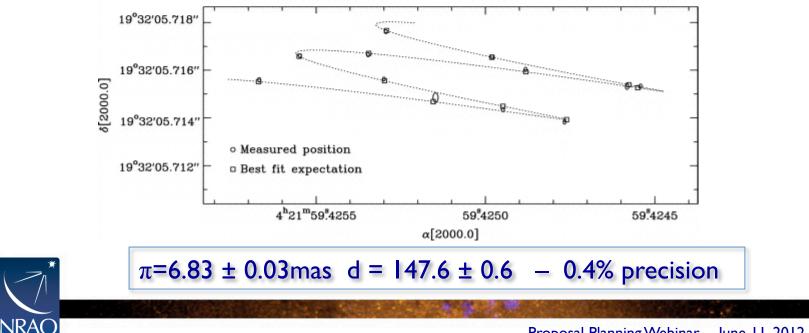
- 10 x 25 meter antennas.
- Spread from Mauna Kea, Hawaii to St. Croix, Virgin Islands.
- Baseline lengths range from 200 to 8600 km.
- Sensitive to compact structures with brightness temperatures above 10⁵ K.
- Correlated on a software correaltor, DiFX.



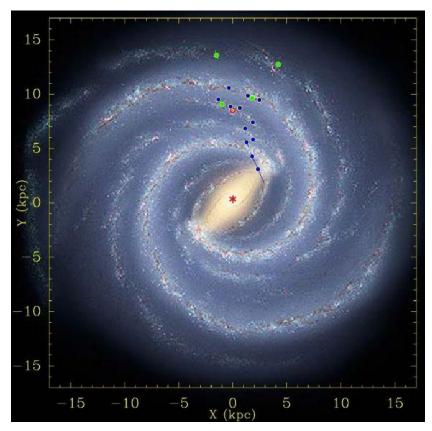
- Resolution
 - $80\mu as$ to 25 mas
 - In the galaxy (100pc-10kpc): I mas resolution is 0.1-10 AUs (even less than a stellar radius for nearby stars)
 - For nearby extragalactic (1-1000Mpc): 1 mas resolution is 1000 AU-5pc
 - E.g., WR140, colliding wind region in Wolf-Rayet binary star system

Dougherty et al. 2005

- Monitoring/fast response
 - Dedicated array
 - Targets of Opportunity
 - Watching objects evolve
 - E.g. I.6 GHz observations recurrent nova RS Ophiuchi (Rupen et al. 2007)


Geodesy

- Earth Rotation and Orientation, tectonic plate motions
- E.g. Daily UTI-UTC observations
 - US Naval Observatory is contributing to VLBA operations in exchange for daily ~I hour observations using 2 VLBA antennas: Mauna Kea and Pie Town
 - High speed network links have been installed at these two sites
 - MK and PT to Washington D.C. at ~250 Mbps
 - Daily ~I hour observations to begin soon
 - When the US Government establishes a budget...
 - VLBA science to face potential interruptions
 - Users have been contacted with tips to reduce impact on observing


Astrometry

- Highly precise positions
 - 100µas precision easily obtained
 - 20µas precision with effort
- Fundamental reference frame
- Parallax, proper motions... (e.g., TTauSb Loinard et al. 2007)

Bar and spiral structure legacy survey (BeSSeL) Reid et al.

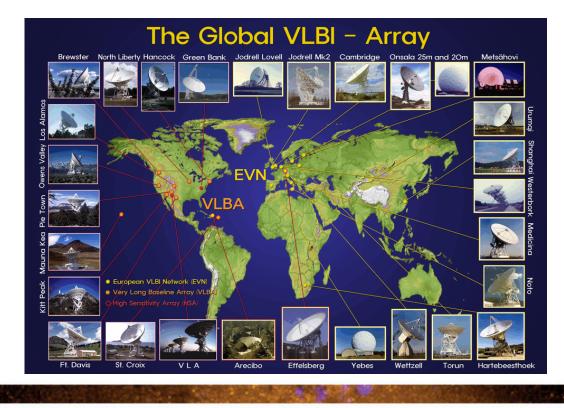
- Goal: determine structure and kinematics of the Milky Way Galaxy
- Perform astrometry on masers in star forming regions
 - Water masers at 22 GHz
 - Methanol at 11 and (soon) 6.7 GHz
- Early results have improved measurements of the distance to the Galactic Center and rotational velocity
 - $R_0 = 8.4 \pm 0.6 \text{ kpc}$
 - $\Theta_0 = 254 \pm 16$ km/s

Frequency bands and sensitivity

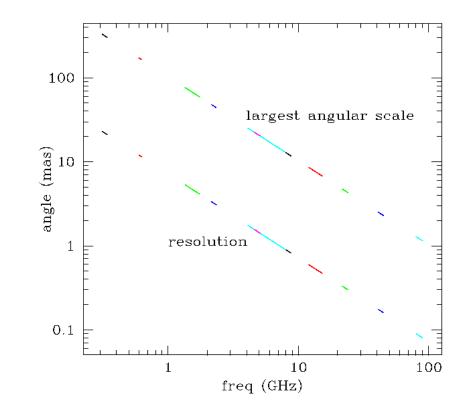
λ(cm)	v(GHz)	σ(μJy/beam) in 4 hrs at 2Gbps
90 cm	0.312 - 0.342	277*
50 cm	0.596 - 0.626	782*
21 cm	1.35 - 1.75	13-14
13 cm	2.15 - 2.35	14
6 cm	4.6 - 5.1	13
6 cm (upgrade)	4.1 - 7.9	8
4 cm	8.0 - 8.8	13
2 cm	12.0 - 15.4	24
1 cm	21.7 - 24.1	18-22
7 mm	41.0 - 45.0	66
3 mm	80.0 - 90.0	316†

- New maximum bandwidth 256 MHz with two polarizations (2Gbps)
- More later about:
 - Increasing sensitivity by adding more/ larger telescopes to the array
 - Sensitivity upgrade
 - C-band upgrade

- * Narrower bandwidths
- † 8 stations


High Sensitivity Array (HSA)

- Adding the Green Bank Telescope (GBT), Arecibo (AR), Effelsberg (EB) and/or the phased VLA with the VLBA can increase the sensitivity by an order of magnitude
 - The VLBA + any two of these telescopes is considered an HSA experiment
- All these telescopes have a smaller field of view than the VLBA and may not have all the frequencies available at the VLBA.
- Phased VLA under development and can be proposed for in the 2012 August 1 deadline.


Global VLBI

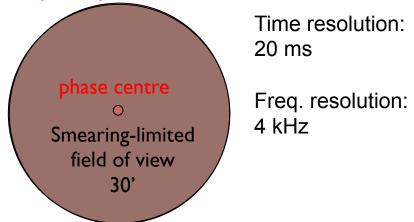
- Add telescopes from the European VLBI Network (EVN) to the VLBA.
- The EVN has many large sensitive telescopes adding them increases the sensitivity as well as improving *uv* coverage (e.g. EVN has many more short baselines so can be more sensitive to larger structures.)

Resolution and Largest Angular scale

- Depending on frequency the resolution of the VLBA is anything from 0.08 to 25 mas
- The largest angular scale determines the largest structure the telescope is sensitive to.

Sensitivity Upgrade

- There are many parts to the sensitivity upgrade, some have already been implemented:
 - DiFX correlator: allows several new capabilities (more later)
 - Wider bandwidths: for a total of 256 MHz, dual polarization. This gives a total bit rate of 2 Gbps, and enables twice the sensitivity of the old VLBA.
 - 256 MHz bandwidth must be justified in proposal
 - 64 MHz bandwidths are standard
- Some in the process of being implemented:
 - C-band upgrade: replace the VLBA's 6 cm receivers
 - To expand the tuning range to 4.1 7.9 GHz. Which will enable observations of the 6.7 GHz transition of methanol.
 - To increase sensitivity: noise will go down by ~35%
 - New receivers installed on 7.5 antennas. Complete mid-August.


DiFX Correlator Capabilities I: Spectral Resolution

- DiFX is a software correlator in Socorro, NM
- Supports up to 4096 channels per sub-band routinely
- Up to 32,768 channels if required and adequately justified
- Spectral zooming can do higher spectral resolution in one or more subbands. Useful for:
 - Masers with in-beam continuum calibrators: wide bands used for maximum sensitivity on calibrator while at the same time high spectral resolution on maser lines.
 - Masers with multiple transitions: wide bands are used to cover a large number of widely separated maser transitions, spectral zooming allows the empty portions of high-resolution spectrum to be discarded

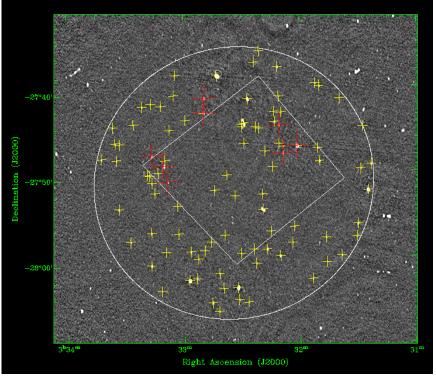
DiFX Correlator Capabilities II:Wide Field Imaging

- DiFX enables wide field imaging due to high spectral and time resolution.
- This ability has been widely used since the introduction of DiFX
- However, full-beam
 VLBA imaging is still a logistical impracticality,

Calculations for 1.6 GHz, total smearing = 10%

DiFX Correlator Capabilities III: Multi-Field Imaging

- The sky is almost entirely empty at VLBI resolution
 - "full beam" imaging not needed; rather, many small
 "fields" (phase centers)
- In previous correlators, multiple fields required multiple correlator passes (usually at same or twice the rate of observation time)
 - Impractical for more than a few fields.


DiFX Correlator Capabilities III: Multi-Field Imaging

- Using uv shifts inside the correlator
 - DiFX allows many phase centers in one correlator pass
 - The overhead is ~2.5 and is only weakly dependent on the number of phase centers
- For reasonable spectral and time resolution requirements,
 200 phase centers require only 20% more correlator time than 2 phase centers.

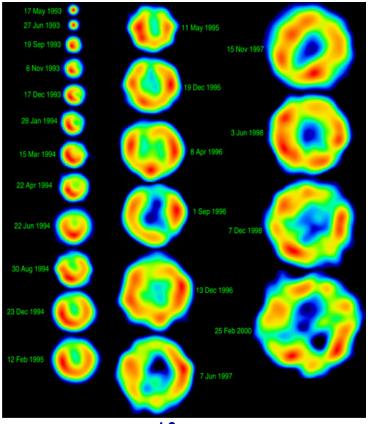
DiFX Correlator Capabilities III: Multi-Field Imaging

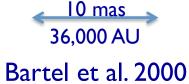
- This enables new science:
 - mJy-sensitivity secondary calibrator searches within a beam
 - Efficient VLBI surveys of mJy and sub-mJy objects are feasible. E.g. Middelberg et al. (2011) already published VLBA results on Chandra Deep Field South

From Middelberg et al., 2011

Commissioning Opportunities

Resident Shared Risk Observations – early access to new capabilities in exchange for a period of residency in Socorro to help commission those capabilities.


- For example, phased-array VLBI on the JVLA
 - We are offering the very simple phased-VLA for next year but there are many things that still need to be commissioned (multiple subarrays, phase transfer from one bandwidth to another...).



Important Links

- NRAO Help Desk
 <u>https://help.nrao.edu</u>
- VLBA Observational Status Summary
 <u>http://www.vlba.nrao.edu/astro/obstatus/current/</u>
- EVN Sensitivity Calculator
 <u>http://www.evlbi.org/cgi-bin/EVNcalc</u>
- Proposal Submission Tool <u>my.nrao.edu</u>
- SCHED observation preparation software <u>http://www.aoc.nrao.edu/software/sched/index.html</u>
- AIPS data reduction software <u>http://www.aips.nrao.edu/index.shtml</u>

SN1993J in M81

