

A Crash Course in Radio Astronomy and Interferometry: 1. Basic Radio/mm Astronomy

James Di Francesco National Research Council of Canada North American ALMA Regional Center – Victoria

(thanks to S. Dougherty, C. Chandler, D. Wilner & C. Brogan)

Intensity & Flux Density

EM power in bandwidth δv from solid angle $\delta \Omega$ intercepted by surface δA is:

$$\delta W = I_{\nu} \delta \Omega \delta A \delta \nu$$

Defines surface brightness I_v (W m⁻² Hz⁻¹ sr⁻¹; aka specific intensity)

Flux density S_v (W m⁻² Hz⁻¹) – integrate brightness over solid angle of source

$$S_{v} = \int_{\Omega_{s}} I_{v} d\Omega$$

Convenient unit – the **Jansky** \rightarrow 1 Jy = 10⁻²⁶ W m⁻² Hz⁻¹ = 10⁻²³ erg s⁻¹ cm⁻² Hz⁻¹

Note: $S_v = L_v / 4\pi d^2$ ie. distance dependent $\Omega \propto 1/d^2 \implies I_v \propto S_v / \Omega$ ie. distance independent

Surface Brightness

In general surface brightness is position dependent, ie. $I_v = I_v(\theta, \phi)$

$$I_{v}(\theta,\varphi) = \frac{2kv^{2}T(\theta,\varphi)}{c^{2}}$$

(if I_v described by a blackbody in the Rayleigh-Jeans limit; hv/kT << 1)

Back to flux:

$$S_v = \int_{\Omega_s} I_v(\theta, \varphi) d\Omega = \frac{2kv^2}{c^2} \int T(\theta, \varphi) d\Omega$$

In general, a radio telescope maps the temperature distribution of the sky

Brightness Temperature

Many astronomical sources DO NOT emit as blackbodies!

However....

Brightness temperature (T_B) of a source is defined as the temperature of a blackbody with the same surface brightness at a given frequency:

$$I_{v} = \frac{2kv^2T_B}{c^2}$$

This implies that the flux density
$$S_v = \int_{\Omega_s} I_v d\Omega = \frac{2kv^2}{c^2} \int T_B d\Omega$$

What does a Radio Telescope Detect?

Recall:
$$\delta W = I_{\nu} \delta \Omega \delta A \delta \nu$$

Telescope of effective area A_e receives power P_{rec} per unit frequency from an unpolarized source but is only sensitive to one mode of polarization:

$$P_{rec} = \frac{1}{2} I_{v} A_{e} \delta \Omega$$

Telescope is sensitive to radiation from more than one direction with *relative* sensitivity given by the normalized antenna pattern $P_N(\theta, \varphi)$:

$$P_{rec} = \frac{1}{2} A_e \int_{4\pi} I_{v}(\theta, \varphi) P_{N}(\theta, \varphi) d\Omega$$

Antenna Temperature

Johnson-Nyquist theorem (1928): P = kT

Power received by the antenna: $P_{rec} = kT_A$

$$P_{rec} = \frac{A_e}{2} \int_{4\pi} I_v(\theta, \varphi) P_N(\theta, \varphi) d\Omega$$

$$\therefore T_A = \frac{A_e}{2k} \int_{4\pi} I_v(\theta, \varphi) P_N(\theta, \varphi) \ d\Omega$$

Antenna temperature is what is observed by the radio telescope.

A "convolution" of sky brightness with the beam pattern It is an inversion problem to determine the source temperature distribution.

Radio Telescopes

The antenna collects the E-field over the aperture at the focus

The *feed horn* at the focus adds the fields together, guides signal to the *front end*

Components of a Heterodyne System

- Amplifier
 - amplifies a very weak radio frequency (RF) signal, is stable & low noise
- Mixer
 - produces a stable lower, intermediate frequency (IF) signal by mixing the RF signal with a stable local oscillator (LO) signal, is tunable
- Filter selects a narrow signal band out of the IF
- Backend either total power detector or more typically today, a correlator

Origin of the Beam Pattern

- Antenna response is a coherent phase summation of the E-field at the focus
- First null occurs at the angle where one extra wavelength of path is added across the full aperture width, i.e., θ ~ λ/D

Antenna Power Pattern

Antenna Power Response at 1 GHz

- The voltage response pattern is the FT of the aperture distribution
- The power response pattern, $P(\theta) \propto V^2(\theta)$, is the FT of the autocorrelation function of the aperture
- for a uniform circle, $V(\theta)$ is $J_1(x)/x$ and $P(\theta)$ is the Airy pattern, $(J_1(x)/x)^2$

The Beam

The antenna "beam" solid angle on the sky is:

$$\Omega_A = \int_{4\pi} P(\theta, \phi) d\Omega$$

Telescope beams @ 345 GHz

	D (m)	θ (")
AST/RO	1.7	103
JCMT	15	15
LMT	50	4.5
SMA	508	0.35
ALMA	15 000	0.012

Sensitivity (Noise)

Unfortunately, the telescope system itself contributes noise to the the signal detected by the telescope, i.e.,

$$P_{out} = P_A + P_{sys}$$
 \rightarrow $T_{out} = T_A + T_{sys}$

The *system temperature*, T_{sys} , represents noise added by the system:

$$T_{sys} = T_{bg} + T_{sky} + T_{spill} + T_{loss} + T_{cal} + T_{rx}$$

 T_{bg} = microwave and galactic background (3K, except below 1GHz)

 T_{sky} = atmospheric emission (increases with frequency--dominant in mm)

 T_{spill} = ground radiation (via sidelobes) (telescope design)

 T_{loss} = losses in the feed and signal transmission system (design)

 T_{cal} = injected calibrator signal (usually small)

 T_{rx} = receiver system (often dominates at cm — a design challenge)

Note that $T_{bg'}$ $T_{sky'}$ and T_{spill} vary with sky position and T_{sky} is time variable

Sensitivity (Noise)

In the mm/submm regime, T_{sky} is the challenge (especially at low elevations)

In general, T_{rx} is essentially at the quantum limit, and $T_{rx} < T_{sky}$

Sensitivity (Noise)

Q: How can you detect T_A (signal) in the presence of T_{sys} (noise)?

A: The signal is correlated from one sample to the next but the noise is not

For bandwidth Δv , samples taken less than $\Delta \tau = 1/\Delta v$ are not independent (Nyquist sampling theorem!)

Time τ contains $N = \tau/\Delta \tau = \tau \Delta v$ independent samples

For Gaussian noise, total error for N samples is $1/\sqrt{N}$ that of single sample

$$\therefore \frac{\Delta T_A}{T_{sys}} = \frac{1}{\sqrt{\tau \Delta \nu}}$$
Radiometer equation
$$SNR = \frac{T_A}{\Delta T_A} = \frac{T_A}{T_{sys}} \sqrt{\tau \Delta \nu}$$

