A Crash Course in Radio Astronomy and Interferometry: 1. Basic Radio/mm Astronomy James Di Francesco National Research Council of Canada North American ALMA Regional Center – Victoria (thanks to S. Dougherty, C. Chandler, D. Wilner & C. Brogan) ### Intensity & Flux Density EM power in bandwidth δv from solid angle $\delta \Omega$ intercepted by surface δA is: $$\delta W = I_{\nu} \delta \Omega \delta A \delta \nu$$ Defines surface brightness I_v (W m⁻² Hz⁻¹ sr⁻¹; aka specific intensity) Flux density S_v (W m⁻² Hz⁻¹) – integrate brightness over solid angle of source $$S_{v} = \int_{\Omega_{s}} I_{v} d\Omega$$ Convenient unit – the **Jansky** \rightarrow 1 Jy = 10⁻²⁶ W m⁻² Hz⁻¹ = 10⁻²³ erg s⁻¹ cm⁻² Hz⁻¹ Note: $S_v = L_v / 4\pi d^2$ ie. distance dependent $\Omega \propto 1/d^2 \implies I_v \propto S_v / \Omega$ ie. distance independent # Surface Brightness In general surface brightness is position dependent, ie. $I_v = I_v(\theta, \phi)$ $$I_{v}(\theta,\varphi) = \frac{2kv^{2}T(\theta,\varphi)}{c^{2}}$$ (if I_v described by a blackbody in the Rayleigh-Jeans limit; hv/kT << 1) Back to flux: $$S_v = \int_{\Omega_s} I_v(\theta, \varphi) d\Omega = \frac{2kv^2}{c^2} \int T(\theta, \varphi) d\Omega$$ In general, a radio telescope maps the temperature distribution of the sky #### Brightness Temperature Many astronomical sources DO NOT emit as blackbodies! However.... Brightness temperature (T_B) of a source is defined as the temperature of a blackbody with the same surface brightness at a given frequency: $$I_{v} = \frac{2kv^2T_B}{c^2}$$ This implies that the flux density $$S_v = \int_{\Omega_s} I_v d\Omega = \frac{2kv^2}{c^2} \int T_B d\Omega$$ #### What does a Radio Telescope Detect? Recall: $$\delta W = I_{\nu} \delta \Omega \delta A \delta \nu$$ Telescope of effective area A_e receives power P_{rec} per unit frequency from an unpolarized source but is only sensitive to one mode of polarization: $$P_{rec} = \frac{1}{2} I_{v} A_{e} \delta \Omega$$ Telescope is sensitive to radiation from more than one direction with *relative* sensitivity given by the normalized antenna pattern $P_N(\theta, \varphi)$: $$P_{rec} = \frac{1}{2} A_e \int_{4\pi} I_{v}(\theta, \varphi) P_{N}(\theta, \varphi) d\Omega$$ #### Antenna Temperature Johnson-Nyquist theorem (1928): P = kT Power received by the antenna: $P_{rec} = kT_A$ $$P_{rec} = \frac{A_e}{2} \int_{4\pi} I_v(\theta, \varphi) P_N(\theta, \varphi) d\Omega$$ $$\therefore T_A = \frac{A_e}{2k} \int_{4\pi} I_v(\theta, \varphi) P_N(\theta, \varphi) \ d\Omega$$ Antenna temperature is what is observed by the radio telescope. A "convolution" of sky brightness with the beam pattern It is an inversion problem to determine the source temperature distribution. ### Radio Telescopes The antenna collects the E-field over the aperture at the focus The *feed horn* at the focus adds the fields together, guides signal to the *front end* #### Components of a Heterodyne System - Amplifier - amplifies a very weak radio frequency (RF) signal, is stable & low noise - Mixer - produces a stable lower, intermediate frequency (IF) signal by mixing the RF signal with a stable local oscillator (LO) signal, is tunable - Filter selects a narrow signal band out of the IF - Backend either total power detector or more typically today, a correlator ### Origin of the Beam Pattern - Antenna response is a coherent phase summation of the E-field at the focus - First null occurs at the angle where one extra wavelength of path is added across the full aperture width, i.e., θ ~ λ/D #### Antenna Power Pattern #### Antenna Power Response at 1 GHz - The voltage response pattern is the FT of the aperture distribution - The power response pattern, $P(\theta) \propto V^2(\theta)$, is the FT of the autocorrelation function of the aperture - for a uniform circle, $V(\theta)$ is $J_1(x)/x$ and $P(\theta)$ is the Airy pattern, $(J_1(x)/x)^2$ #### The Beam The antenna "beam" solid angle on the sky is: $$\Omega_A = \int_{4\pi} P(\theta, \phi) d\Omega$$ Telescope beams @ 345 GHz | | D (m) | θ (") | |--------|--------|--------------| | AST/RO | 1.7 | 103 | | JCMT | 15 | 15 | | LMT | 50 | 4.5 | | SMA | 508 | 0.35 | | ALMA | 15 000 | 0.012 | ### Sensitivity (Noise) Unfortunately, the telescope system itself contributes noise to the the signal detected by the telescope, i.e., $$P_{out} = P_A + P_{sys}$$ \rightarrow $T_{out} = T_A + T_{sys}$ The *system temperature*, T_{sys} , represents noise added by the system: $$T_{sys} = T_{bg} + T_{sky} + T_{spill} + T_{loss} + T_{cal} + T_{rx}$$ T_{bg} = microwave and galactic background (3K, except below 1GHz) T_{sky} = atmospheric emission (increases with frequency--dominant in mm) T_{spill} = ground radiation (via sidelobes) (telescope design) T_{loss} = losses in the feed and signal transmission system (design) T_{cal} = injected calibrator signal (usually small) T_{rx} = receiver system (often dominates at cm — a design challenge) Note that $T_{bg'}$ $T_{sky'}$ and T_{spill} vary with sky position and T_{sky} is time variable ### Sensitivity (Noise) In the mm/submm regime, T_{sky} is the challenge (especially at low elevations) In general, T_{rx} is essentially at the quantum limit, and $T_{rx} < T_{sky}$ # Sensitivity (Noise) *Q*: How can you detect T_A (signal) in the presence of T_{sys} (noise)? A: The signal is correlated from one sample to the next but the noise is not For bandwidth Δv , samples taken less than $\Delta \tau = 1/\Delta v$ are not independent (Nyquist sampling theorem!) Time τ contains $N = \tau/\Delta \tau = \tau \Delta v$ independent samples For Gaussian noise, total error for N samples is $1/\sqrt{N}$ that of single sample $$\therefore \frac{\Delta T_A}{T_{sys}} = \frac{1}{\sqrt{\tau \Delta \nu}}$$ Radiometer equation $$SNR = \frac{T_A}{\Delta T_A} = \frac{T_A}{T_{sys}} \sqrt{\tau \Delta \nu}$$