

### A Crash Course in Radio Astronomy and Interferometry: 3. Interferometric Imaging

James Di Francesco National Research Council of Canada North American ALMA Regional Center – Victoria

(thanks to S. Dougherty, C. Chandler, D. Wilner & C. Brogan)



### Aperture Synthesis

- sample V(u,v) at enough points to synthesize the equivalent large aperture of size  $(u_{max}, v_{max})$ 
  - 1 pair of telescopes  $\rightarrow$  1 (*u*,*v*) sample at a time
  - N telescopes  $\rightarrow$  number of samples = N(N-1)/2
  - fill in (*u*,*v*) plane by making use of Earth rotation: Martin Ryle, 1974 Nobel Prize in Physics
  - reconfigure physical layout of N telescopes for more





Sir Martin Ryle 1918-1984

2 configurations of 8 SMA antennas 345 GHz Dec = -24 deg

### (*u*,*v*) Plane Sampling

• in aperture synthesis, V(u,v) samples are limited by number of telescopes, and Earth-sky geometry



- high spatial frequencies:
  - maximum angular resolution
- low spatial frequencies:
  - extended structures invisible
    (aka. only a max scale can be imaged; also ``zero-spacing problem" = no large scales)
- irregular within high/low limits:
  - sampling theorem violated
  - still more information missing

## Formal Description

- sample Fourier domain at discrete points, i.e.,  $B(u,v) = \sum \delta_{ii}(u,v)$
- so, the inverse Fourier transform of the ensemble of visibilities is:  $I^{D}(x,y) = FT^{-1}\{B(u,v) \times V(u,v)\}$
- but the convolution theorem tells us:  $I^D(x,y) = b(x,y) \otimes I(x,y)$

where  $b(x, y) = FT^{-1}\{B(u, v)\}$  (the point spread function)

#### Fourier transform of sampled visibilities yields the true sky brightness convolved with the point spread function

(the "dirty image" is the true image convolved with the "dirty beam")

### Dirty Beam and Dirty Image



### Dirty Beam Shape and N Antennas



## Dirty Beam Shape and N Antennas



# Dirty Beam Shape and N Antennas



## Dirty Beam Shape and N Antennas



## Dirty Beam Shape and N Antennas



## Dirty Beam Shape and N Antennas



# Dirty Beam Shape and N Antennas



# Dirty Beam Shape and N Antennas 8 Antennas x 6 Samples



# Dirty Beam Shape and N Antennas 8 Antennas x 30 Samples



# Dirty Beam Shape and N Antennas 8 Antennas x 60 Samples



# Dirty Beam Shape and N Antennas 8 Antennas x 120 Samples



# Dirty Beam Shape and N Antennas 8 Antennas x 240 Samples



# Dirty Beam Shape and N Antennas 8 Antennas x 480 Samples



### How to analyze interferometer data?

- uv plane analysis
  - best for "simple" sources, e.g., point sources, disks
- image plane analysis
  - Fourier transform V(u,v) samples to image plane, get  $I^D(x,y)$
  - but difficult to do science on dirty image
  - deconvolve b(x,y) from  $I^{D}(x,y)$  to determine (model of) I(x,y)



## Weighting and Tapering

- Visibility Weighting in the FT:
  - Including *weighting function* W to modify dirty beam sidelobes:  $b(x,y) = FT^{-1}\{W(u,v)B(u,v)\}$
  - *natural weighting*: density of uv-coverage = highest compact flux sensitivity
  - uniform weighting: extent of uv-coverage = highest resolution
  - *robust weighting*: compromise between natural and uniform
  - *tapering*: downweights high spatial frequencies = higher extended flux sensitivity
- imaging parameters provide a lot of freedom
- appropriate choice depends on science goals
- recall that the primary beam FWHM is the "field-of-view" of a single-pointing interferometric image

### Weighting and Tapering: Examples



### Field of View: Single Pointing



B68 ALMA single pointing

### Field of View: Mosaics



B68 ALMA Band 3 mosaic

Nyquist Spacing

=  $3^{-1/2}$  ( $\lambda$ /D) rad.

= 29.75" x  $(v/100 \text{ GHz})^{-1}$ 

= constant rms over inner area

Mosaics of up to 50 pointings OK for Early Science

# Next: Deconvolution