A Crash Course in Radio Astronomy and Interferometry: 4. Deconvolution Techniques

James Di Francesco
National Research Council of Canada
North American ALMA Regional Center – Victoria

(thanks to S. Dougherty, C. Chandler, D. Wilner & C. Brogan)
Deconvolution

- difficult to do science on dirty image
- deconvolve $b(x,y)$ from $I^D(x,y)$ to recover $I(x,y)$
- information is missing, so be careful! (there’s noise, too)
Deconvolution Algorithms

- **Deconvolution:**
 - uses non-linear techniques effectively interpolate/extrapolate samples of \(V(u,v) \) into unsampled regions of the \((u,v)\) plane
 - aims to find a **sensible** model of \(I(x,y) \) compatible with data
 - requires *a priori* assumptions about \(I(x,y) \)

- **CLEAN (Högbom 1974)** is most common algorithm in radio astronomy
 - *a priori* assumption: \(I(x,y) \) is a collection of point sources
 - variants for computational efficiency, extended structure

- deconvolution requires knowledge of beam shape and image noise properties (usually OK for aperture synthesis)
 - atmospheric seeing can modify effective beam shape
 - deconvolution process can modify image noise properties
Basic CLEAN Algorithm

1. Initialize
 - a residual map to the dirty map
 - a CLEAN component list
2. Identify strongest feature in residual map as a point source
3. Add a fraction g (the loop gain) of this point source to the clean component list ($g \sim 0.05-0.3$)
4. Subtract the fraction g times $b(x,y)$ from residual map
5. If stopping criteria* not reached, go back to step 2 (an iteration), or...
6. Convolve CLEAN component (cc) list with an estimate of the main dirty beam lobe (i.e., the “CLEAN beam”) and add residual map to make the final “restored” image

* Stopping criteria = $N \times$ rms (if noise limited), or I_{max}/N (if dynamic range limited), where N is some arbitrarily chosen value
Deconvolution

CLEAN

$I^D(x,y)$

restored image

CLEAN model

residual map
“Restored” Images

• CLEAN beam size:
 – natural choice is to fit the central peak of the dirty beam with elliptical Gaussian
 – unit of deconvolved map is Jy per CLEAN beam area
 (= intensity, can convert to brightness temperature)
 – minimize unit problems when adding dirty map residuals
 – modest super resolution often OK, but be careful

• photometry should be done with caution
 – CLEAN does not conserve flux (extrapolates)
 – extended structure missed, attenuated, distorted
 – phase errors (e.g. seeing) can spread signal around
Measures of Image Quality

- "dynamic range"
 - ratio of peak brightness to rms noise in a region void of emission (common in astronomy)
 - an easy to calculate lower limit to the error in brightness in a non-empty region

- "fidelity"
 - difference between any produced image and the correct image
 - a convenient measure of how accurately it is possible to make an image that reproduces the brightness distribution on the sky
 - need a priori knowledge of correct image to calculate

 - fidelity image = input model / difference
 - fidelity is the inverse of the relative error
Summary

- Radio Telescopes are cool
 - Single-dish telescopes measure “temperatures” across the sky
 - They have fat beams making details hard to see

- Interferometers use optics to achieve high resolution
 - Antenna pairs sample the FT of the image plane, an inverse FT of the ensemble of visibilities returns the image
 - Resulting images are spatially filtered; only compact emission seen
 - “Dirty” images can be deconvolved (with care), e.g., CLEAN
 - Weighting can be used to manipulate resolution and/or surface brightness sensitivity
 - Mosaics can be used to increase field-of-view but can be observationally expensive