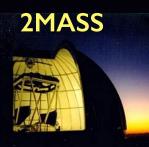
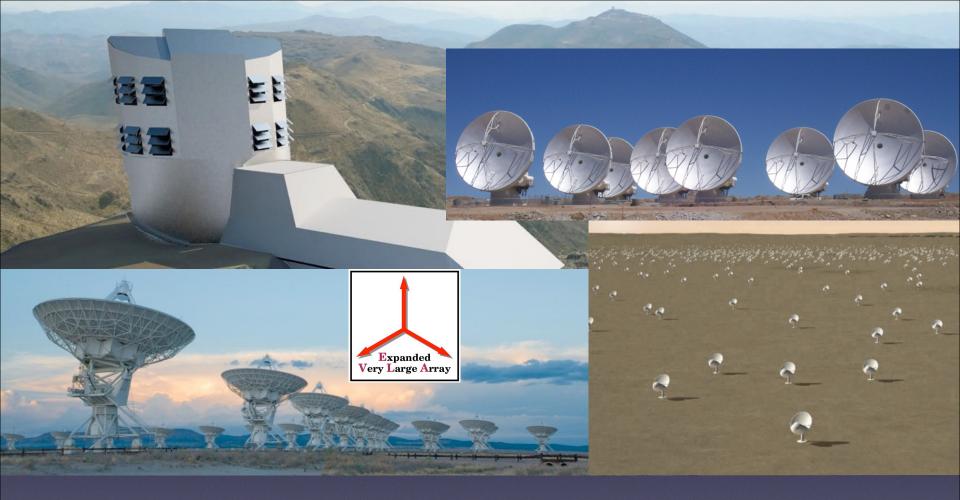
Complementary Multi-wavelength Surveys: the near-IR+Optical+UV

Željko lvezić, University of Washington


The 223rd AAS meeting, Washington, D.C., Jan 5, 2014



Outline

- 1) Motivation for UV-optical-nearIR surveys complementing radio surveys
- 2) Legacy surveys
- 3) Ongoing surveys
- 4) Upcoming surveys
- 5) Summary

The connections between optical and radio regimes:

- 1) Science Results (asking similar and often same questions;
- e.g. stellar and galaxy formation and evolution, dark energy)
- 2) Tools and Methods (e.g. massive databases)
- 3) Supplemental data (identification, physical processes, HI)

What is needed?

- FIRST faint limit at 21 cm is 1 mJy (mAB=16.4)
- 30% of FIRST sources are detected by SDSS (mAB~22). The matched sources represent about 0.1% of all SDSS sources.
- 90% of radio sources at the FIRST faint limit that are also detected by SDSS are optically resolved
- to reach >95% detection level for FIRST sources, an optical survey to mAB~26 is needed
- of course, it would be scientifically useful to complement such an optical survey with UV and near-IR surveys

What is needed?

- Depth
- Bandpasses
- Angular Resolution
- Sky coverage
- Time domain?

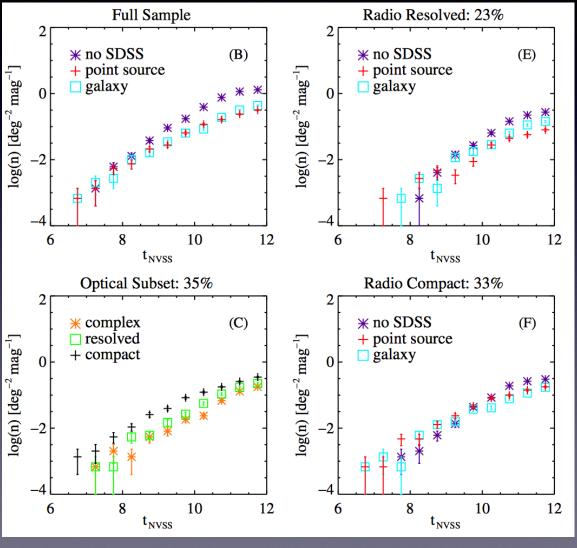
Dec. [deg]

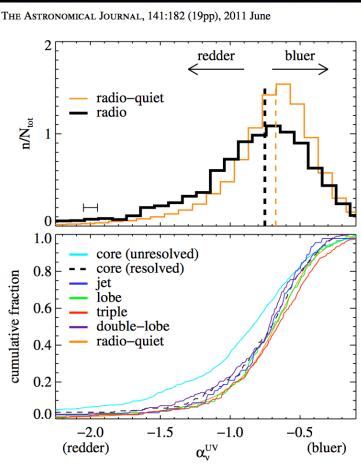
200

R.A. [deg]

100

NVSS


300


100

R.A. [deg]

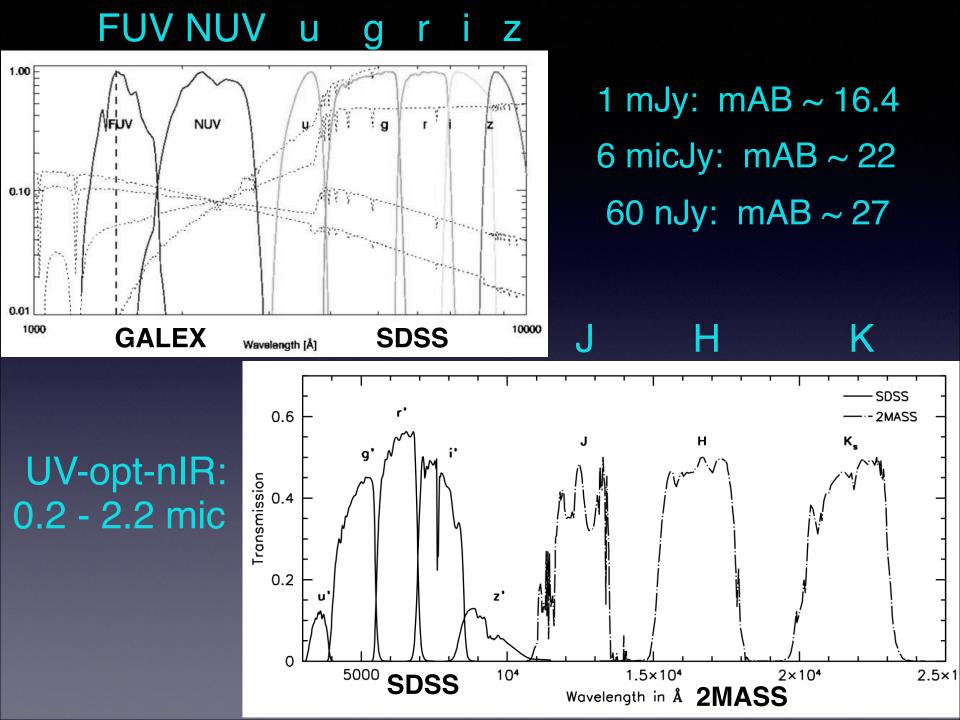
Examples of analysis

- bin radio sources by optical properties
- bin optical sources by radio properties

Figure 3. Distributions of ultraviolet spectral index α_{ν}^{UV} ; more negative values indicate a redder continuum. Top: normalized histograms of α_{ν}^{UV} for radio-quiet quasars (orange) and radio quasars (black) for sources with i < 19.1. Spectral index was calculated from g-i color excess (see the text). Dashed lines show the median values for each sample. The error bar in the lower left shows the median scatter of α_{ν}^{UV} about the $\delta(g-i)$ vs. α_{ν}^{UV} correlation. Bottom: cumulative distributions for individual radio morphology classes and the radio-quiet sample.

Kimball et al. (2008, 2011, 2014)

Three generations of UV-optical-near-IR surveys


1) Legacy:

```
GALEX + SDSS + 2MASS
time domain: ASAS, NSVS, LINEAR, PTF, ...
```

2) Ongoing:

```
Pan-STARRS, DES, Subaru-HSC, (SkyMapper), time domain: CRTS, iPTF, MASTER, near-IR: UKIDSS, VISTA
```

3) Future: ZTF, Gaia, LSST, Euclid, WFIRST

Legacy surveys

GALEX: two UV bands (0.12 and 0.22 mic), mAB ~ 21, all sky

SDSS: five bands (ugriz, 0.3-1.0 mic), mAB ~ 22 , $\sim 1/4$ sky (north)

2MASS: three IR bands (JHK, 1.2, 1.7, 2.2 mic), mAB ~17, all sky

UKIDSS is a set of five surveys. The areas and 5-sigma depths are as follows:

1.	::	Large Area Survey (LAS)	4000 sq. degs	K=18.4	extraGalactic
2.	::	Galactic Plane Survey (GPS)	1800 sq. degs	K=19.0	Galactic
3.	::	Galactic Clusters Survey (GCS)	1400 sq. degs	K=18.7	Galactic
4.	::	Deep Extragalactic Survey (DXS)	35 sq. degs	K=21.0	extraGalactic
5.	::	Ultra Deep Survey (UDS)	0.77 sq. degs	K=23.0	extraGalactic

VISTA: 1/2 sky to J~21, K~20

UKIDSS: ZYJHK

Ongoing surveys

A quick comparison of imaging depths for SDSS, DES and LSST:

	SDSS	DES (5 yrs)	LSST (1 epo	ch) LSST (10 yrs)
u	22.1	n/a	23.9	26.1
g	22.4	25.2	25.0	27.4
r	22.1	24.7	24.7	27.5
i	21.2	24.0	24.0	26.8
Z	20.3	23.4	23.3	26.1
У	n/a	21.7	22.1	24.9

LSST will be 4.0-6.0 mags deeper than SDSS, over 2 times larger area.

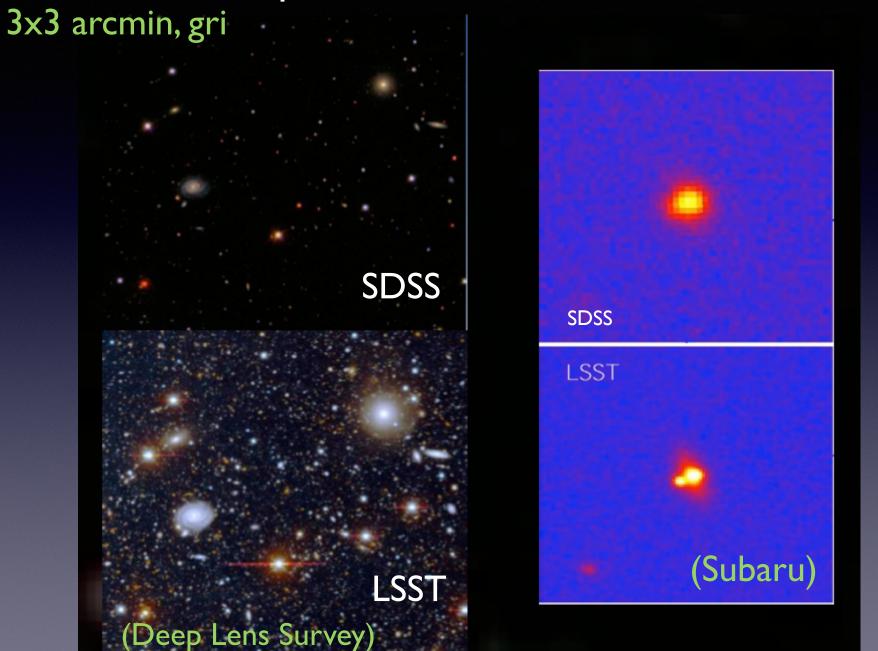
LSST will be 2.5-3.0 mags deeper than DES, over 4 times larger area.

DES and Pan-STARRS will have a high matching completeness for radio sources (perhaps as high as 90% for FIRST/NVSS sources). Pan-STARRS is north!

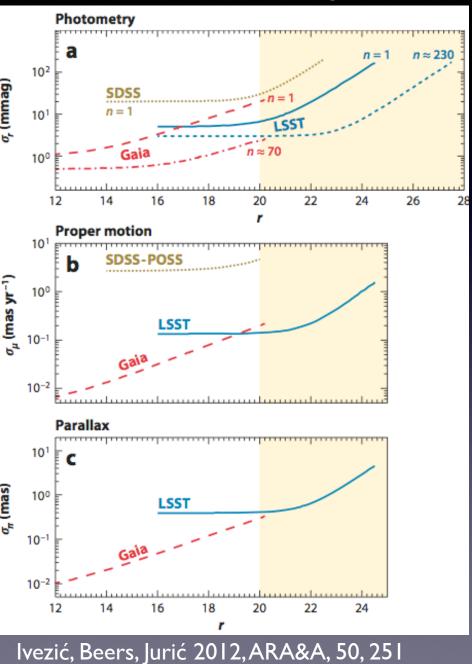
LSST: a uniform sky survey

- ~90% of time will be spent on a uniform survey: every 3-4 nights,
 the whole observable sky will be scanned twice per night
- after 10 years, half of the sky will be imaged about 1000 times (in 6 bandpasses, ugrizy): a digital color movie of the sky
- ~100 PB of data: about 2.5 million 3.2 Gpix images (visits), enabling measurements for 40 billion objects

Left: a


acquired number of visits: r

LSST in one sentence:


An optical/near-IR survey of half the sky in ugrizy bands to r~27.5 (36 nJy) based on 1000 visits over a 10-year period: deep wide fast.

Left: a 10-year simulation of LSST survey: the number of visits in the r band (Aitoff projection of eq. coordinates)

SDSS-LSST comparison: LSST=d(SDSS)/dt, LSST=SuperSDSS

Gaia vs. LSST comparison

- Gaia: excellent astrometry (and photometry), but only to r < 20
- LSST: photometry to r < 27.5 and time resolved measurements to r < 24.5
- Complementarity of the two surveys: photometric, proper motion and trigonometric parallax errors are similar around r=20

The Milky Way disk "belongs" to Gaia, and the halo to LSST (plus very faint and/or very red sources, such as white dwarfs and LT(Y) dwarfs).

Summary

- 1) Existing UV-opt-IR surveys are not deep enough for the full identification of ~ 1 mJy radio sources
- 2) Ongoing surveys will greatly improve areal coverage and depth (north: Pan-STARRS, south: DES)
- 3) Time domain is a different game (esp. if coeval)
- 4) Gaia will give all-sky coverage and excellent astrometry and photometry but only to V~20 (21?)
- 5) LSST will eventually provide the deepest coverage over 1/2 sky (south: Dec < +5 deg)
- 6) Many interestingly deep optical and near-IR surveys cover only a fraction of sky: it is important to optimize the sky coverage of any new major radio surveys with this in mind!