
The S-Band Sky Survey (SBSS)

Any new VLA Sky Survey should be designed to maximize the legacy value of each pointing, we suggest that this means:

- Maximizing the number of sources. For a shallower than Euclidean distribution, that means wide rather than deep.
 FIRST area or larger and at least 3x deeper.
- Maximizing the resolution, while minimizing over-resolution.
 (Since maximizing the number of sources means knowing what source is what [e.g., with reference to the optical/IR]).
 - $N_{gals}/sq. arcmin = 46*10^0.31*(i-25)$
 - >2 galaxies with i < 24 in ASKAP beams
 - 14 galaxies with i < 26.8 in ASKAP beam 10
 - Thus B-array (or A-array) observation \$\bar{\bar{g}}\$
- Pointing in an area that the most number of people care about (e.g., LSST, DES fields).

The S-Band Sky Survey (SBSS)

Given these constraints, S-band provides the biggest impact:

- Broader bandwidth than L for radio colors and depth
- Less of the survey area limited by dynamic range (vs. L)
- Frequency/Resolution not too high/too low
- Legacy value into the ASKAP, MeerKAT and SKA-phase 1 era

Surveys are very efficient. Not just in "open-shutter time", but also in community utility. A number of options exist for a "super-FIRST" taking less than 8000 hours (including overhead):

Area (deg^2)	Depth (μJy) [rms]	Time (hours)	Exposure (s)	Efficiency (%)
10000	15	37000	342	92
2200	15	8000	342	92
10000	50	3970	31	71
20000	50	7940	31	71
10000	35	7500	60	81