A Binary Supermassive Black Hole

binary_blackhole.jpg

D.A. Perley et al. report the serendipitous discovery of a new radio-wavelength source at a projected offset of 460 parsecs (pc) from the nucleus of Cygnus A, one of the best-studied powerful radio galaxies and the archetype of a class II radio galaxy, in which two powerful oppositely directed jets of relativistic matter are observed to emanate from a central point source at the galaxy nucleus and terminate at bright hotspots in extensive edge-brightened radio lobes in the halo.

The flux density of the new source – designated Cygnus A-2 – rose from an upper limit of < 0.5 milli-Jansky in 1989 to 4 milli-Jansky in 2016 (ν = 8.5 GHz), but is currently not varying by more than a few percent per year. The radio luminosity of the source is comparable to the most luminous known supernovae, it is compact in Very Long Baseline Array observations down to a scale of 4 pc, and it is coincident with a near-infrared point source seen in pre-existing adaptive optics and HST observations. The most likely interpretation of this source is that it represents a secondary supermassive black hole in a close orbit around the Cygnus A primary, though an exotic supernova model cannot be ruled out. The gravitational influence of a secondary supermassive black hole at this location may have played an important role in triggering the rapid accretion that has powered the Cygnus A radio jet over the past 107 years.

Image: [Left] A wide-field image of the Cygnus A region. The background is Gemini Observatory optical imaging; the contours are VLA data at 2 GHz from 2015 November, showing the iconic jet and lobe structure. [Right] A zoom into the Cygnus A nuclear region. The background is  Keck Observatory Adaptive Optics imaging from Canalizo et al. (2003). The radio contours are from a 35 GHz VLA image acquired in 2016 October. A distinct, luminous point source is detected 0.42 arcsec from the luminous nucleus in the radio and in the near infrared imaging.

Publication: D. A. Perley (Liverpool John Moores University, University of Copenhagen) et al., Discovery of a Luminous Radio Transient 460 pc from the Central Supermassive Black Hole in Cygnus A, 2017, Astrophysical Journal, 841, 117.

Connect with NRAO

The National Radio Astronomy Observatory and Green Bank Observatory are facilities of the U.S. National Science Foundation operated under cooperative agreement by Associated Universities, Inc.