Finding the Youngest Radio Jets

The authors present new sub-arcsecond Jansky Very Large Array (VLA) imaging at 10 GHz of 155 ultra-luminous (Lbol∼1011.714.2L) and heavily obscured quasars with redshifts z ∼ 0.4−3. The sample was selected to have extremely red mid-infrared to optical color ratios based on data from the Wide-Field Infrared Survey Explorer (WISE) along with a detection of bright, unresolved radio emission from the NRAO VLA Sky Survey (NVSS) or Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) Survey. High-resolution VLA observations have revealed that the majority of the sources in this sample (93 of 155) are compact on angular scales < 0.2 arcseconds (≤ 1.7 kpc at z ∼ 2). The radio luminosities, linear extents, and lobe pressures of these sources are similar to young radio active galactic nuclei (AGN) but their space density is considerably lower. Application of a simple adiabatic lobe expansion model suggests relatively young dynamical ages (∼1047 years), relatively high ambient interstellar medium densities (∼1−104 cm3), and modest lobe expansion speeds (∼30−10,000 km s1). The authors find their sources to be consistent with a population of newly-triggered, young jets caught in a unique evolutionary stage in which they still reside within the dense gas reservoirs of their hosts. Based on their radio luminosity function and dynamical ages, the authors estimate only ∼20% of classical large scale FRI/II radio galaxies could have evolved directly from these objects. They speculate that the WISE-NVSS sources might first become Gigahertz Peaked Spectrum or Compact Steep Spectrum sources, of which some might ultimately evolve into larger radio galaxies.

Figure caption: [Left] VLA Sky Survey and FIRST images of the emerging radio loud quasar population. [Right] VLA spectrum of one source showing the flat radio spectrum.

Publication: Pallavi Patil (University of Virginia) et al., High-resolution VLA Imaging of Obscured Quasars: Young Radio Jets Caught in a Dense ISM, Astrophysical Journal, 896, 18 (9 June 2020).

Connect with NRAO

The National Radio Astronomy Observatory and Green Bank Observatory are facilities of the U.S. National Science Foundation operated under cooperative agreement by Associated Universities, Inc.