The Dynamical Mass of a Protoplanetary Disk

Elias 2-27 is a 0.8 Myr old M-star, with a massive protoplanetary disk. The disk has a 14 AU wide gap at 69 AU radius, suggesting a 0.1MJ  forming planet. Atacama Large Millimeter / submillimeter Array (ALMA) imaging of the dust and CO 3-2 emission reveals spiral arms, and a rotating disk, providing the first dynamical mass estimate of a protoplanetary disk, with: Mstar = 0.46 M⊙ and  Mdisk = 0.08 M⊙. Departures from Keplerian rotation suggest instabilities which may lead to planet formation.

Image Caption: ALMA imaging of the protoplanetary disk of Elias 2-27. [Left] 3.3mm dust emission. [Center &and Right] 13CO 3-2 total intensity and the velocity field 

Publication-1: Benedetta Veronesi (Universita degli Studi di Milano) et al., A Dynamical Measurement of the Disk Mass in Elias 2-27, Astrophysical Journal Letters, 914, L27 (June 2021).

Publication-2: Teresa Paneque-Carreño (Universidad de Chile) et al., Spiral Arms and a Massive Dust Disk with Non-Keplerian Kinematics: Possible Evidence for Gravitational Instability in the Disk of Elias 2-27, Astrophysical Journal, 914, 88 (June 2021).

NRAO Press Release: Study of Young Chaotic Star System Reveals Planet Formation Secrets

Connect with NRAO

The National Radio Astronomy Observatory and Green Bank Observatory are facilities of the U.S. National Science Foundation operated under cooperative agreement by Associated Universities, Inc.