Limitations on Imaging Performance
VLA capabilities January 2013 - April 2014
1. Introduction
Imaging performance can be limited in many different ways. Some of the most common are listed in the following subsections.
2. Image Fidelity
With conventional external calibration methods, even under the best observing conditions, the achieved dynamic range will rarely exceed a few hundred. The limiting factor is most often the atmospheric phase stability, although pointing errors and changes in atmospheric opacity can also be a limiting factor. If the target source contains compact structures of sufficient strength (depending on the band, bandwidth, atmospheric coherence time, and source complexity), self-calibration can be counted on to improve the images. Dynamic ranges in the thousands to hundreds of thousands can be achieved using these techniques, depending on the underlying nature of the errors. With the new WIDAR correlator and its much greater bandwidths and much higher sensitivities, self-calibration methods can be extended to observations of sources with much lower flux densities than very possible with the old VLA.
3. Invisible Structures
An interferometric array acts as a spatial filter, so that for any given configuration, structures on a scale larger than the fringe spacing of the shortest baseline will be completely absent. Diagnostics of this effect include negative bowls around extended objects, and large-scale stripes in the image. Table 5 gives the largest scale visible to each configuration/band combination.
4. Poorly Sampled Fourier Plane
Unmeasured Fourier components are assigned values by the deconvolution algorithm. While this often works well, sometimes it fails noticeably. The symptoms depend upon the actual deconvolution algorithm used. For the CLEAN algorithm, the tell-tale sign is a fine mottling on the scale of the synthesized beam, which sometimes even organizes itself into coherent stripes. Further details are to be found in Reference 1 in Documentation.
5. Sidelobes from Confusing Sources
At the lower frequencies, large numbers of detectable background sources are located throughout the primary antenna beam, and into its first sidelobe. Sidelobes from those sources which have not been deconvolved will lower the image quality of the target source. Although bandwidth smearing and time-averaging will tend to reduce the effects of these sources, the very best images will require careful imaging of all significant background sources. The deconvolution tasks in AIPS (IMAGR) and CASA (clean) are well suited to this task.
6. Sidelobes from Strong Sources
An extension of the previous section is to very strong sources located anywhere in the sky, such as the Sun (especially when a flare is active), or when observing with a few tens of degrees of the very strong sources Cygnus A and Casseopeia A. Image degradation is especially notable at lower frequencies, shorter configurations, and when using narrow-bandwidth observations (especially in spectral line work) where chromatic aberration cannot be utilized to reduce the disturbances. In general, the only relief is to include the disturbing sources in the imaging, or to observe when these objects are not in the viewable hemisphere.