Combining Configurations and Mosaicing

 

Any single VLA configuration will allow accurate imaging of a range of spatial scales determined by the shortest and longest baselines. For extended and structured objects, it may be required to obtain observations in multiple array configurations. It is advisable that the frequencies used be the same for all configurations to be combined. The ideal combination of arrays results in a uv-plane with all cells equally filled by uv-points. To first order, this can be achieved by using the beam sizes of the individual arrays to inversely scale the on-source integration time. This approach is equivalent to achieving the same surface brightness sensitivity for all arrays on all scales. For the VLA, observations in the different configurations generate beam sizes that decrease by factors of 3, i.e. C configuration generates a 3 times smaller beam than D configuration, B 3 times smaller than C, and A three times smaller than B. Thus, on-source integrations would increase by about an order of magnitude between each array. Such a drastic increase is very expensive and, in fact, not necessary since some spatial scales are common to more than a single array, which is equivalent to some uv-cells being filled more than others. The best way to fill the uv plane depends on many factors, such as declination of the source, LST time of the observation, and bandwidth.

For the VLA, experience shows that a factor of about 3 in on-source integration time for the different array configurations works well for most experiments.

E.g., 20min on-source time in D, 1h in C, 3h in B, and 9h in A should produce a decent map. Using large bandwidths and multi-frequency synthesis will broaden all uv tracks radially and one may need even less array configurations or shorter integration times between the different arrays.

 

Objects larger than the primary antenna pattern may be mapped through the technique of interferometric mosaicking.  The VLA has no limit on the number of pointings for each mosaic. Typically hexagonal, rectangular, or individual pointing patterns are used and the overlap regions will result in an improved rms over each individual pointing. Given the many, potentially short observations, it is important to obey the data rate limits outlined in the "Time Resolution and Data Rate Limits" section.

On-the-fly mosaics, i.e. dumping the data while moving the telescopes across the source, is currently undergoing testing and can be applied for within a Resident Shared Risk proposal.


Time-variable structures (such as the nuclei of radio galaxies and quasars) cause special, but manageable, problems. See the article by Mark Holdaway in reference 2 (Documentation) for more information.

Guidelines for mosaicing with the VLA are given in the VLA Observing Guide.

Connect with NRAO

The NSF National Radio Astronomy Observatory and NSF Green Bank Observatory are facilities of the U.S. National Science Foundation operated under cooperative agreement by Associated Universities, Inc.